Chọn x = 6, ta được mệnh đề "6 > 5" là mệnh đề đúng.
Chọn x = 0, ta được mệnh đề “0 > 5” là mệnh đề sai.
5". Hãy tìm hai giá trị thực của x để từ câu đã cho, ta nhận được một mệnh đề đúng và một mệnh đề sai."> 5". Hãy tìm hai giá trị thực của x để từ câu đã cho, ta nhận được một mệnh đề đúng và một mệnh đề sai." />
Chọn x = 6, ta được mệnh đề "6 > 5" là mệnh đề đúng.
Chọn x = 0, ta được mệnh đề “0 > 5” là mệnh đề sai.
Với hai số thực a và b, xét mệnh đề P: “\({a^2} < {b^2}\)” và Q: “\(0 < a < b\)”
a) Hãy phát biểu mệnh đề \(P \Rightarrow Q\);
b) Hãy phát biểu mệnh đề đảo của mệnh đề ở câu a.
c) Xác định tính đúng sai của mỗi mệnh đề ở câu a và câu b.
Cho hai câu sau:
P: “Tam giác ABC là tam giác vuông”;
Q: “Tam giác ABC có một góc bằng tổng hai góc còn lại”
Hãy phát biểu mệnh đề tương đương \(P \Leftrightarrow Q\) và xét tính đúng sai của mệnh đề này.
Câu “Mọi số thực đều có bình phương không âm” là một mệnh đề. Có thể viết mệnh đề này như sau:
\(P: "\forall x \in \mathbb R,\;{x^2} \ge 0"\)
Câu “Có một số hữu tỉ mà bình phương của nó bằng 2” là một mệnh đề. Có thể viết mệnh đề này như sau: \(Q: "\exists \;x \in \mathbb Q,{x^2} = 2"\)
Em hãy xác định tính đúng sai của hai mệnh đề trên.
Phát biểu bằng lời mệnh đề sau và cho biết mệnh đề đó đúng hay sai.
"\(\forall x \in \mathbb R,\;{x^2} + 1 \le 0.\)"
Cho mệnh đề Q: “Châu Á là châu lục có diện tích lớn nhất trên thế giới”. Phát biểu mệnh đề phủ định \(\overline Q \) và xác định tính đúng sai của hai mệnh đề Q và \(\overline Q \).
Hãy xác định tính đúng sai của mệnh đề sau:
“Một số tự nhiên chia hết cho 5 nếu số đó có chữ số tận cùng bằng 0 hoặc 5 và ngược lại”.
Phát biểu mệnh đề đảo của mỗi mệnh đề sau và xác định tính đúng sai của mệnh đề này.
P: “Nếu số tự nhiên n có chữ số tận cùng là 5 thì n chia hết cho 5”;
Q: “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD có hai đường chéo bằng nhau”
Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và xác định tính đúng sai của mệnh đề phủ định đó.
P: “2 022 chia hết cho 5”
Q: “Bất phương trình 2x + 1 > 0 có nghiệm”.
Xác định tính đúng sai của mệnh đề sau và tìm mệnh đề phủ định của nó.
Q: “\(\exists \;n \in \mathbb{N},n\) chia hết cho \(n + 1\)”