Mệnh đề Q: “\(\exists \;n \in \mathbb{N},n\) chia hết cho \(n + 1\)” đúng. Vì \(\exists \;0 \in \mathbb{N},0\; \vdots \;1\).
Mệnh đề phủ định của mệnh đề Q, kí hiệu \(\overline Q\) là: “\(\forall \;n \in \mathbb{N},n\) không chia hết cho \(n + 1\)”
Mệnh đề Q: “\(\exists \;n \in \mathbb{N},n\) chia hết cho \(n + 1\)” đúng. Vì \(\exists \;0 \in \mathbb{N},0\; \vdots \;1\).
Mệnh đề phủ định của mệnh đề Q, kí hiệu \(\overline Q\) là: “\(\forall \;n \in \mathbb{N},n\) không chia hết cho \(n + 1\)”
Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và xác định tính đúng sai của mệnh đề phủ định đó.
P: “2 022 chia hết cho 5”
Q: “Bất phương trình 2x + 1 > 0 có nghiệm”.
Phát biểu mệnh đề đảo của mỗi mệnh đề sau và xác định tính đúng sai của mệnh đề này.
P: “Nếu số tự nhiên n có chữ số tận cùng là 5 thì n chia hết cho 5”;
Q: “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD có hai đường chéo bằng nhau”
Cho mệnh đề Q: “Châu Á là châu lục có diện tích lớn nhất trên thế giới”. Phát biểu mệnh đề phủ định \(\overline Q \) và xác định tính đúng sai của hai mệnh đề Q và \(\overline Q \).
Hãy xác định tính đúng sai của mệnh đề sau:
“Một số tự nhiên chia hết cho 5 nếu số đó có chữ số tận cùng bằng 0 hoặc 5 và ngược lại”.
Phát biểu bằng lời mệnh đề sau và cho biết mệnh đề đó đúng hay sai.
"\(\forall x \in \mathbb R,\;{x^2} + 1 \le 0.\)"
Với hai số thực a và b, xét mệnh đề P: “\({a^2} < {b^2}\)” và Q: “\(0 < a < b\)”
a) Hãy phát biểu mệnh đề \(P \Rightarrow Q\);
b) Hãy phát biểu mệnh đề đảo của mệnh đề ở câu a.
c) Xác định tính đúng sai của mỗi mệnh đề ở câu a và câu b.
Cho các mệnh đề
P: “a và b chia hết cho c”;
Q: “a + b chia hết cho c”.
a) Hãy phát biểu định lí \(P \Rightarrow Q\). Nêu giả thiết, kết luận của định lí và phát biểu định lí này dưới dạng điều kiện cần, điều kiện đủ.
b) Hãy phát biểu mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) rồi xác định tính đúng sai của mệnh đề đảo này.
Câu “Mọi số thực đều có bình phương không âm” là một mệnh đề. Có thể viết mệnh đề này như sau:
\(P: "\forall x \in \mathbb R,\;{x^2} \ge 0"\)
Câu “Có một số hữu tỉ mà bình phương của nó bằng 2” là một mệnh đề. Có thể viết mệnh đề này như sau: \(Q: "\exists \;x \in \mathbb Q,{x^2} = 2"\)
Em hãy xác định tính đúng sai của hai mệnh đề trên.
Xác định tính đúng sai của mỗi mệnh đề sau:
a) \(\pi > \dfrac{{10}}{3};\)
b) Phương trình \(3x + 7 = 0\) có nghiệm;
c) Có ít nhất một số cộng với chính nó bằng 0;
d) 2022 là hợp số.