4) \(\dfrac{x-\sqrt{x}}{1-\sqrt{2\left(x^2-x+1\right)}}\ge1\)
5)\(x^2+x+1>3\sqrt{x}\left(x+1\right)\)
6)\(\dfrac{1}{1-x^2}>\dfrac{3x}{\sqrt{1-x^2}}-1\)
nữa ạ
Giai phương trình
\(\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=3\\\left(z+x\right)\left(1+y\right)\left(1+z\right)=\left(1+\sqrt[3]{xyz}\right)^3\end{cases}\)
cho x,y,z>0 va x*y*z=1
cm: (x+y)*(y+z)*(z+x)\(\ge\frac{8}{3}\cdot\left(x+y+z\right)\)
1)giải pt \(\sqrt{4-x^2}+\sqrt{1+4x}+\sqrt{x^2+y^2-2y-3}=\sqrt{x^4-16}-y+5\)
2) giả sử x>z ; y>z ; z>0 .cmr \(\sqrt{z\left(x-z\right)}+\sqrt{z\left(y-z\right)}\le\sqrt{xy}\)
áp dụng bất đẳng thức cô si chứng minh các bất đẳng thức:
a, (a+b+c)*(a^2+b^2+c^2)>=9abc
b,\(\left(1+a\right)\cdot\left(1+b\right)\cdot\left(1+c\right)>=\left(1+\sqrt[3]{abc}\right)^3\)
c, a^2*(1+b^2)+b^2*(1+c^2)+c^2(1+a^2)>=6abc
>=: lớn hơn hoặc bằng
Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(f\left(x\right)=\sqrt{x+1}+\sqrt{3-x}\)
Cho các số thực x,y thỏa mãn: \(\dfrac{x^2+y^2}{2}=y-2x\). Chứng minh rằng:
\(\left|\sqrt{2-2x}-\sqrt{4x+6y+20}\right|=3\sqrt{2}\)
Cho \(x,y,z\) là các số thực dương. CMR: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\ge2+\frac{2\left(x+y+z\right)}{3\sqrt{xyz}}\)
1) \(x+\sqrt{1-x^2}< x\sqrt{1-x^2}\)
2)\(\dfrac{1}{\sqrt{2x^2+3x-3}}>\dfrac{1}{2x-1}\)
3)\(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}< 2x+\dfrac{1}{2x}+4\)
giúp mình ạ