\(y'=1+\dfrac{m}{2\sqrt{x}}\)
Hàm có cực trị tại \(x=1\) khi \(y'=0\) có nghiệm \(x=1\)
\(\Rightarrow1+\dfrac{m}{2\sqrt{1}}=0\Rightarrow m=-2\)
\(y'=1+\dfrac{m}{2\sqrt{x}}\)
Hàm có cực trị tại \(x=1\) khi \(y'=0\) có nghiệm \(x=1\)
\(\Rightarrow1+\dfrac{m}{2\sqrt{1}}=0\Rightarrow m=-2\)
Cho hàm số y = f(x) xác định trên tập số thực R và có đạo hàm f'(x) = (x - sinx)(x- m- 3)(x- \(\sqrt{9-m^2}\) )3 ∀x∈ R (m là tham số). Có bao nhiêu giá trị nguyên của m để hàm số y =f(x) đạt cực tiểu tại x = 0
Xác định giá trị của tham số m để hàm số \(y=\dfrac{x^2+mx+1}{x+m}\) đạt cực đại tại \(x=2
\)
Xác định giá trị của tham số m hàm số \(y=x^3-2x^2+mx+1\) đạt cực tiểu tại \(x=1\) ?
cho hàm số y=\(\dfrac{x^2+mx+1}{x+m}\)với m là tham số. với giá trị nào của tham số m thì hàm số đạt cực đại tại x=2?
a. m=-3 b.m=3 c.m=-1 d.m=0
Cho hàm số \(y=x^3-3\left(m+1\right)x^2+9x-m\) (1) với m là tham số thực
Xác định m để hàm số (1) đạt cực trị tại \(x_1,x_2\) thỏa mãn \(\left|x_1-x_2\right|\le2\)
Xác định m để hàm số
\(y=x^3-mx^2+\left(m-\dfrac{2}{3}\right)x+5\)
có cực trị tại \(x=1\). Khi đó hàm số đạt cực tiêu hay đạt cực đại ? Tính cực trị tương ứng ?
Cho hàm số \(y=x^3+\left(1-2m\right)x^2+\left(2-m\right)x+m+2\) (1) với m là tham số thực
Xác định m để đồ thị hàm số (1) đạt cực đại và cực tiểu, đồng thời có hoành độ của điểm cực tiểu nhỏ hơn 1
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
Câu 6. Tìm các giá trị thực của tham số \(m\) để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3.
A. \(m=1,m=5\)
B. \(m=5\)
C. \(m=1\)
D. \(m=-1\)