Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{-2}{2a}=-1\\-\dfrac{4-4ac}{4a}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\4-4c=-20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=6\end{matrix}\right.\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{-2}{2a}=-1\\-\dfrac{4-4ac}{4a}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\4-4c=-20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=6\end{matrix}\right.\)
Xác định parabol (P) y=ax^2+2x+c (a khác 0) biết rằng (P) có đỉnh S( 1;5)
Xác định parabol (P) y=ax^2-8x+c (a khác 0); biết rằng (P) có đỉnhI(4; -15).
Xác định parabol y= ax2 + bx + c, (a#0), biết rằng đỉnh của parabol đó có tung độ bằng -25, đồng thời parabol đó cắt trục hoành tại hai điểm A(-4;0) và B(6;0).
Tìm parabol y=ax2-4x+c, biết rằng (P) đó:
a) Có đỉnh S(-2;2)
Xác định parabol y=ax²+bx+c biết nó có trục đối xứng là x=-2, qua A(1;4) và có đỉnh thuộc đường thẳng y=2x-1.
xác định parabol (p): y=\(ax^2+bx+c\), a\(\ne\)0 biết p cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng \(\dfrac{3}{4}\) khi x=\(\dfrac{1}{2}\)
Xác định Parabol : y = \(ax^2\) + bx + 2 biết
a) (P) đi qua A (3,-4) và có trục đối xứng là x = \(\dfrac{-3}{2}\) ;
b) (P) có đỉnh I (2,-1).
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
xác định parabol (P) : y= ax2 + bx + c , biết parabol này :
a) Đi qua 3 điểm O(0;0) , A(1;1) và B(-1;-3)
b) Đi qua 3 điểm A(1;0) , A(2;8) và B(0;-6)
c) Đi qua điểm A(0;5) và có đỉnh I (3;-4)
d) cắt trục hoành tại 2 điểm A,B có hoành độ lần lượt là 1;2 và có trục đối xứng là đường thẳng 2x -3=0
a) Lập bảng biến thiên và vẽ đồ thị hàm số (P): y=-x^2 +2x
b) Xác định parabol (P) y= ax^2 +bx+c biết (P) cắt trục tung tại điểm có tung độ =1 và có đỉnh I ( 2;-3)