ĐKXĐ: \(\left\{{}\begin{matrix}2x+a\ge0\\2a-1-x\ge0\end{matrix}\right.\) \(\Rightarrow-\dfrac{a}{2}\le x\le2a-1\)
Miền xác định là đoạn có độ dài 1 khi:
\(2a-1-\left(-\dfrac{a}{2}\right)=1\)
\(\Rightarrow a=\dfrac{4}{5}\)
ĐKXĐ: \(\left\{{}\begin{matrix}2x+a\ge0\\2a-1-x\ge0\end{matrix}\right.\) \(\Rightarrow-\dfrac{a}{2}\le x\le2a-1\)
Miền xác định là đoạn có độ dài 1 khi:
\(2a-1-\left(-\dfrac{a}{2}\right)=1\)
\(\Rightarrow a=\dfrac{4}{5}\)
Xác định a để tập xác định của hàm số \(y=\sqrt{2x-a}+\sqrt{2a-1-x}\) là một đoạn có độ dài bằng 1.
ĐỊnh a để hàm số sau xác định với mọi x > 2
\(y=\sqrt{2x-3a+4}+\dfrac{x-a}{x+a-1}\)
Tập tất cả các giá trị thực của tham số m để hàm số y = \(-\dfrac{mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1) là ?
bài 1 tìm tập xác định của các hàm số
a) y= \(\dfrac{4x^2+1}{x^3-x}\)
b) y= \(\dfrac{5\sqrt{x}}{\left|x\right|-1}\)
c) y = \(\dfrac{2x-1}{\sqrt[3]{x^2-1}}\)
Tìm tập xác định của hàm sô \(y=\sqrt{x+2}+\dfrac{x^3}{4\left|x\right|-3}\) và hàm số \(y=\dfrac{x}{\left|x\right|x+1}-\sqrt{3-x}\)
Gọi S là tập hợp tất cả các giá trị thực của tham số a sao cho hàm số \(f\left(x\right)=\sqrt{4x-x^2-6a^3-18a^2}-\sqrt{a^3+3a^2-2x-x^2}\) chỉ xác định tại đúng một điểm. Tính số phần tử của S ?
Giúp với, mình cần gấp
Tìm m để hàm số : y=\(\dfrac{x+1}{3x^2-2x+m}\) có tập xác định là .
Tìm Tập xác định của các hàm số sau:
\(d.y=\dfrac{2x-1}{\sqrt{x\left|x\right|-4}}\\ e.y=\dfrac{x^2+2x+3}{\left|x^2-2x\right|+\left|x-1\right|}\\ f.y=\dfrac{\sqrt{x+2}}{x\left|x\right|+4}\\ g.y=\dfrac{\sqrt{x\left|x\right|+4}}{x}\)
Tìm tập xác định của hàm số a) y = x ^ 4 + 3x ^ 2 + x - 1 . c) y = (2x - 1)/((2x + 1)(x - 3)) b) y = (3x - 1)/(- 2x + 2)