Tập tất cả các giá trị thực của tham số m để hàm số y = \(-\dfrac{mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1) là ?
Gọi S là tập hợp tất cả các giá trị thực của tham số m để GTNN của hàm số \(y=f\left(x\right)=4m^2-4mx+m^2-2m\) trên đoạn [0;2] bằng 3. Tính tổng T các phần tử của S.
Tìm tất cả các giá trị của m để hàm số sau xác định trên R:
a, \(y=\dfrac{x+3}{\left(2m-4\right)x+m^2-9}\)
b, \(y=\dfrac{x+3}{x^2-2\left(m-3\right)x+9}\)
c, \(y=\dfrac{x+3}{\sqrt{x^2+6x+2m-3}}\)
d, \(y=\dfrac{x+3}{\sqrt{-x^2+6x+2m-3}}\)
e, \(y=\dfrac{x+3}{\sqrt{x^2+2\left(m-1\right)x+2m-2}}\)
Tìm Tập xác định của các hàm số sau:
\(d.y=\dfrac{2x-1}{\sqrt{x\left|x\right|-4}}\\ e.y=\dfrac{x^2+2x+3}{\left|x^2-2x\right|+\left|x-1\right|}\\ f.y=\dfrac{\sqrt{x+2}}{x\left|x\right|+4}\\ g.y=\dfrac{\sqrt{x\left|x\right|+4}}{x}\)
Cho hàm số \(y=x^2-\left(m-\sqrt{m^2-16}\right)x+2m+2\sqrt{m^2-16}\) . Gọi GTLN , GTNN của hàm số trên [2:3] lần lượt là \(y_1,y_2\) . Số giá trị của tham số m để \(y_1-y_2=3\) là bao nhiêu
cho biết tập hợp các giá trị của tham số để phương trình \(2\left(x^2+\dfrac{1}{x^2}\right)-3\left(x+\dfrac{1}{x}\right)-2m-1=0\)
có nghiệm là S = \(\left[\dfrac{-b}{a};+\infty\right]\)
với a, b là các số nguyên dương a/b là phân số tối giản. Tính a + b
1. tìm tất cả các giá trị thực của tham số m để hàm số \(\frac{x+2m+2}{x-m}\) xác định trên (-1;0) ....... Đ/S: \(m\ge0\)
2. tìm tất cả các giá trị thực của tham số m để hàm số \(y=\frac{mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1)
3. tìm tất cả các giá trị thực của tham số m để hàm số \(y=\sqrt{x-m}+\sqrt{2x-m-1}\) xác định trên \(\left(0;+\infty\right)\)
Gọi S là tập hợp các giá trị thực của tham số m sao cho Parabol (P): \(y=x^2-4x+m\) cắt Ox tại 2 điểm phân biệt A,B thỏa mãn OA=3OB . Tính tổng T của các phần tử S
bài 1 tìm tập xác định của các hàm số
a) y= \(\dfrac{4x^2+1}{x^3-x}\)
b) y= \(\dfrac{5\sqrt{x}}{\left|x\right|-1}\)
c) y = \(\dfrac{2x-1}{\sqrt[3]{x^2-1}}\)