Chương 2: HÀM SỐ BẬC NHẤT VÀ BẬC HAI

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thiên Yết

Gọi S là tập hợp các giá trị thực của tham số m sao cho Parabol (P): \(y=x^2-4x+m\) cắt Ox tại 2 điểm phân biệt A,B thỏa mãn OA=3OB . Tính tổng T của các phần tử S

Nguyễn Việt Lâm
7 tháng 10 2020 lúc 8:05

Phương trình hoành độ giao điểm: \(x^2-4x+m=0\) (1)

(P) cắt Ox tại 2 điểm pb \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb

\(\Leftrightarrow\Delta'=4-m>0\Rightarrow m< 4\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow x_1;x_2\) lần lượt là hoành độ OA, OB

\(\Rightarrow\left\{{}\begin{matrix}OA=\left|x_1\right|\\OB=\left|x_2\right|\end{matrix}\right.\) \(\Rightarrow\left|x_1\right|=3\left|x_2\right|\Rightarrow\left\{{}\begin{matrix}x_1=3x_2\\x_1=-3x_2\end{matrix}\right.\)

Th1: \(x_1=3x_2\) kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1=3x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=3\\x_2=1\end{matrix}\right.\) \(\Rightarrow m=x_1x_2=3\)

TH2: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1=-3x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=6\\x_2=-2\end{matrix}\right.\)

\(\Rightarrow m=x_1x_2=-12\)

Vậy \(\left[{}\begin{matrix}m=3\\m=-12\end{matrix}\right.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
dia fic
Xem chi tiết
anh phuong
Xem chi tiết
Thiên Yết
Xem chi tiết
Annie Scarlet
Xem chi tiết
tơn nguyễn
Xem chi tiết
autumn
Xem chi tiết
Cplusplus
Xem chi tiết
Cplusplus
Xem chi tiết
Lê Nhật Quang
Xem chi tiết