Phương trình hoành độ giao điểm: \(x^2-4x+m=0\) (1)
(P) cắt Ox tại 2 điểm pb \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb
\(\Leftrightarrow\Delta'=4-m>0\Rightarrow m< 4\)
Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow x_1;x_2\) lần lượt là hoành độ OA, OB
\(\Rightarrow\left\{{}\begin{matrix}OA=\left|x_1\right|\\OB=\left|x_2\right|\end{matrix}\right.\) \(\Rightarrow\left|x_1\right|=3\left|x_2\right|\Rightarrow\left\{{}\begin{matrix}x_1=3x_2\\x_1=-3x_2\end{matrix}\right.\)
Th1: \(x_1=3x_2\) kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1=3x_2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=3\\x_2=1\end{matrix}\right.\) \(\Rightarrow m=x_1x_2=3\)
TH2: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1=-3x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=6\\x_2=-2\end{matrix}\right.\)
\(\Rightarrow m=x_1x_2=-12\)
Vậy \(\left[{}\begin{matrix}m=3\\m=-12\end{matrix}\right.\)