Giả sử\(x^2+y^2\ge\dfrac{\left(x^2+y^2\right)}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge x^2+y^2\)
\(\Leftrightarrow2x^2-x^2+2y^2-y^2\ge0\)
\(\Leftrightarrow x^2+y^2\ge0\) ( luôn đúng )
Giả sử\(x^2+y^2\ge\dfrac{\left(x^2+y^2\right)}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge x^2+y^2\)
\(\Leftrightarrow2x^2-x^2+2y^2-y^2\ge0\)
\(\Leftrightarrow x^2+y^2\ge0\) ( luôn đúng )
CMR: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
Help me!!!
chứng minh rằng:
a) x2+y2≥(\(\left(\dfrac{x+y}{2}\right)\)2
Chứng minh các bất đẳng thức sau:
a. \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
b. \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=2\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\)
Tìm giá trị biểu thức D = \(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2\)
1. Giải các BPT
a) \(\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)
b)\(\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\)
c) (x+3)2\(\le\)x2-7
cho x,y là số thực #0.cmr:\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{x}\)
các bạn giúp mil ngay nha
Giải PT:
a, \(\dfrac{x^2+x+1}{x^2+x+2}+\dfrac{x^2+x+2}{x^2+x+3}=\dfrac{7}{6}\)
b, \(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)
c, \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
Help me!!! Mk cần gấp!!!
Mọi người ơi giải bài tập này hộ tớ đi
Mai tớ kt 1 tiết rồi
a)
\(\frac{\left(2x+1\right)^2}{4}+\frac{\left(2x-1\right)^2}{2}\ge\frac{12\left(x+5\right)^2}{4}\) ;
b)
\(\frac{\left(1-x\right)^2}{7}-\frac{2\left(x+3\right)^2}{3}\le\frac{-11\left(x+5\right)^2}{21}\) ;
c)
\(|5-3x|=2+x\)
Chứng minh rằng:
a, \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
b, \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
c, \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
d, \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)