\(dk:x\ge\frac{-10}{3}\)
\(x^2+9x+20=2\sqrt{3x+10}\Leftrightarrow x^2+6x+10+\left(3x+10\right)-2\sqrt{3x+10}=0\Leftrightarrow\left(x^2+6x+9\right)+\left(3x+10-2\sqrt{3x+10}+1\right)=\left(x+3\right)^2+\left(\sqrt{3x+10}-1\right)^2=0\Rightarrow\left\{{}\begin{matrix}x+3=0\\\sqrt{3x+10}=1\end{matrix}\right.\Leftrightarrow x=-3\left(tmdk\right)\)
Điều kiện 3x + 10 ≥ 0 =>x ≥ -10 /3
Pt <=> (3x + 10)² + 7(3x + 10) + 10 = 18\(\sqrt{\left(3x+10\right)}\)
Đặt y = \(\sqrt{\left(3x+10\right)}\) ≥ 0 pt trở thành
y⁴ + 7y² - 18y + 10 = 0
<=> (y - 1)²(y² + 2y + 10) = 0
<=> (y-1)^2 [(y+1)^2 +9] =0
mà (y+1)^2 +9 > 0 =>y=1 => x= -3