PT có 2 nghiệm
`<=>\Delta>0`
`<=>m-4>=0<=>m>=4`
Áp dụng vi-ét:
`x_1.x_2=1,x_1+x_2=m`
`M=x_1-x_2`
`<=>M^2=(x_1-x_2)^2=(x_1+x_2)^2-4x_1.x_2`
`<=>M^2=m^2-4`
`<=>M=+-\sqrt{m^2-4}(do \ m>=4)`
PT có 2 nghiệm
`<=>\Delta>0`
`<=>m-4>=0<=>m>=4`
Áp dụng vi-ét:
`x_1.x_2=1,x_1+x_2=m`
`M=x_1-x_2`
`<=>M^2=(x_1-x_2)^2=(x_1+x_2)^2-4x_1.x_2`
`<=>M^2=m^2-4`
`<=>M=+-\sqrt{m^2-4}(do \ m>=4)`
1 . Cho pt :\(x^2-mx+m-1=0\) . Tìm m để pt có 2 nghiệm \(x_1,x_2\) và biểu thức \(A=\dfrac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}\) đạt GTLN
2.Giả sử m là giá trị để phương trình \(x^2-mx+m-2=0\) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{x_1^{^2}-2}{x_1-1}.\dfrac{x^2_2-2}{x_2-1}=4\) . Tìm các giá trị của m
cho phương trình \(x^2-2\left(m-1\right)x+m-5=0\)
1giải phương trình đã cho với m=2
2 tìm m để phương trình có hai nghiệm \(x_1,x_2\).tìm m để biểu thức \(P=\left|x_1-x_2\right|\)đạt giá trị nhỏ nhất
Cho phương trình \(x^2-\left(2m+1\right)x-m^2-m=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1< x_2\). Tìm mọi giá trị m để : \(S=x_1^2-x_2=-1\).
Cho phương trình \(x^2-2\left(m+1\right)+2m-3=0\)
Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt thoản mãn biểu thức \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\)
đạt GTNN
gọi \(x_1,x_2\) là hai nghiệm của phương trình \(x^2-2\left(m-3\right)-6m-7=0\) với m là tham số. Tìm giá trị nhỏ nhất của biểu thức: C=\(\left(x_1+x_2\right)^2+8x_1x_2\)
Cho phương trình: \(x^2+2\left(m+1\right)x+m-4=0\) (m là tham số) (1)
a) Giải phương trình (1) khi \(m=-5\)
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\)
Cho phương trình: x\(^2\) - 2(m-1)x + m - 3 = 0.
1, Chứng minh phương trình luôn có 2 nghiệm \(x_1\), \(x_2\) với mọi giá trị của m.
2, Tìm m để: \(\dfrac{x_1}{x_2}\) + \(\dfrac{x_2}{x_1}\) = \(x_1\).\(x_2\)
cho pt: \(x^2-2mx+m^2-m+1=0\) (x là ẩn số). Tìm m để pt có 2 nghiệm \(x_1;x_2\) sao cho biểu thức A=\(x_1^3+x_2^3-2x_1-2x_2\) đạt giá trị nhỏ nhất.
cho phương trình \(x^2+mx+n-3=0\)
a, cho n = 0, chứng minh phương trình luôn có nghiệm với mọi m
b,tìm m và n để 2 nghiệm \(x_1;x_2\) của phương trình (i) thoả mãn \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\)