a: \(\Leftrightarrow x^2+\left(2m-2\right)x-2m-5=0\)
\(\text{Δ}=\left(2m-2\right)^2-4\left(-2m-5\right)\)
\(=4m^2-8m+4+8m+20=4m^2+24>0\)
Do đó: Phương trình luôn có nghiệm
b:
Khi m=2 thì pt trở thành: \(x^2+2x-9=0\) \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=\dfrac{x_1^2+x_2^2}{\left(x_1\cdot x_2\right)^2}=\dfrac{\left(x_1+x_2\right)^2-2x_1\cdot x_2}{\left(x_1\cdot x_2\right)^2}\)
\(=\dfrac{\left(-2\right)^2-2\cdot\left(-9\right)}{\left(-9\right)^2}=\dfrac{4+18}{81}=\dfrac{22}{81}\)