Tìm môđun của các số phức sau :
a) \(z_1=-5+\dfrac{1}{2}i\)
b) \(z_2=\sqrt{3}-\sqrt{7}i\)
Nhắc lại các định nghĩa số phức, số phức liên hợp, môđun của số phức. Biểu diễn hình học của số phức ?
Cho hàm số \(y=x^3+ax^2+bx+1\)
a) Tìm a và b để đồ thị của hàm số đi qua hai điểm \(A\left(1;2\right);B\left(-2;-1\right)\)
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với các giá trị tìm được của a và b
c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng giớ hạn bởi các đường \(y=0;x=0;x=1\) và đồ thị (C) xung quanh trục hoành
a) Xác định a, b, c, d để đồ thị của các hàm số
\(y=x^2+ax+b\) và \(y=cx+d\)
cùng đi qua hai điểm \(M\left(1;1\right)\) và \(B\left(3;3\right)\)
b) Vẽ đồ thị của các hàm số ứng với các giá trị a, b, c và d tìm được trên cùng một mặt phẳng tọa độ. Tính diện tích của hình phẳng giới hạn bởi hai đường cong trên
c) Tính thể tích của vật thể tròn xoay sinh bởi hình phẳng trên quay quanh trục hoành
Cho hàm số :
\(y=-\dfrac{1}{3}x^3+x^2+m-1\)
a) Chứng minh rằng đồ thị của hàm số đã cho luôn có hai điểm cực trị. Xác định m để một trong những điểm cực trị đó thuộc trục Ox
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi \(m=\dfrac{1}{3}\)
c) Viết phương trình tiếp tuyến với (C), biết rằng tiếp tuyến đó vuông góc với đường thẳng \(y=\dfrac{1}{3}x-2\)
d) Tính diện tích hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng \(x=0;x=2\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số :
a) \(f\left(x\right)=\ln\left(x^2+x-2\right)\) trên đoạn \(\left[3;6\right]\)
b) \(f\left(x\right)=\cos^2x+\cos x+3\)
Tìm các đường tiệm cận của đồ thị các hàm số sau :
a) \(y=\dfrac{5x+3}{-x+2}\)
b) \(y=\dfrac{-6x+2}{x-1}\)
c) \(y=\dfrac{2x^2+8x-9}{3x^2+x-4}\)
d) \(y=\dfrac{x+2}{-2x+5}\)
Tìm môđun của các số phức sau :
a) \(z=\left(-4+i\sqrt{48}\right)\left(2+i\right)\)
b) \(z=\dfrac{1+i}{2-i}\)
Cho hàm số :
\(y=\dfrac{1}{3}x^3-\left(m-1\right)x^2+\left(m-3\right)x+4\dfrac{1}{2}\) (1)
(m là tham số )
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm (1) khi m = 0
b) Viết phương trình của tiếp tuyến với đồ thị C( tại điểm \(A\left(0;4\dfrac{1}{2}\right)\)
c) Tình diện tích hình phẳng giới hạn bởi (C), trục hoành và các đường thẳng \(x=0;x=2\)
d) Xác định m để đồ thị (1) cắt đường thẳng \(y=-3x+4\dfrac{1}{2}\) tại 3 điểm phân biệt