Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
0o0^^^Nhi^^^0o0

Với n thuộc N

Chứng minh: \(A=\dfrac{n^5}{120}+\dfrac{n^4}{12}+\dfrac{7n^3}{24}+\dfrac{5n^2}{12}+\dfrac{n}{5}\)có giá trị nguyên

Huy Thắng Nguyễn
10 tháng 1 2018 lúc 22:45

\(A=\dfrac{n^5}{120}+\dfrac{n^4}{12}+\dfrac{7n^3}{24}+\dfrac{5n^2}{12}+\dfrac{n}{5}\)

\(=\dfrac{n^5}{120}+\dfrac{10n^4}{120}+\dfrac{35n^3}{120}+\dfrac{50n^2}{120}+\dfrac{24n}{120}\)

\(=\dfrac{n^5+10n^4+35n^3+50n^2+24n}{120}\)

\(=\dfrac{n\left(n^4+10n^3+35n^2+50n+24\right)}{120}\)

\(=\dfrac{n\left(n^4+n^3+9n^3+9n^2+26n^2+26n+24n+24\right)}{120}\)

\(=\dfrac{n\left[n^3\left(n+1\right)+9n^2\left(n+1\right)+26n\left(n+1\right)+24\left(n+1\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n^3+9n^2+26n+24\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n^3+2n^2+7n^2+14n+12n+24\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left[n^2\left(n+2\right)+7n\left(n+2\right)+12\left(n+2\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n^2+7n+12\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n^2+3n+4n+12\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left[n\left(n+3\right)+4\left(n+3\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}{120}\)

Để A có giá trị nguyên thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

Thật vậy, vì A là tích của 5 số tự nhiên liên tiếp nên trong 5 số đó có 2 số chẵn liên tiếp (tích chia hết cho 8),1 số chia hết cho 3, 1 số chia hết cho 5

mà 8, 3, 5 đôi một nguyên tố cùng nhau nên \(A=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)⋮8.3.5=120\)

Vậy A có giá trị nguyên với mọi n \(\in\) N.


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Hoàng Tuấn
Xem chi tiết
Nguyễn Thị Huyền Trang
Xem chi tiết
Trần Ích Bách
Xem chi tiết
Nguyễn Thị Huyền Trang
Xem chi tiết
Juvia Lockser
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Thu Hà Nguyễn
Xem chi tiết
Big City Boy
Xem chi tiết