Câu A:
Ta có:
\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n}{6}+\frac{3n^2}{6}+\frac{n^3}{6}\)
\(=\frac{2n+3n^2+n^3}{6}\)
Xét tử : \(2n+3n^2+n^3=n(n^2+3n+2)=n(n^2+n+2n+2)\)
\(=n[n(n+1)+2(n+1)]=n(n+1)(n+2)\)
Vì \(n(n+1)(n+2)\) là tích của 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)
Vì $n(n+1)$ là tích của 2 số nguyên liên tiếp nên \(n(n+1)\vdots 2\)
\(\Rightarrow n(n+1)(n+2)\vdots 2\)
Mà \((2,3)=1\Rightarrow n(n+1)(n+2)\vdots (2.3=6)\)
Do đó: \(A=\frac{n(n+1)(n+2)}{6}\in\mathbb{Z}\)
Ta có đpcm.
Câu B:
Ta có:
\(B=\frac{n^4}{24}+\frac{6n^3}{24}+\frac{11n^2}{24}+\frac{6n}{24}\)\(=\frac{n^4+6n^3+11n^2+6n}{24}\)
Xét mẫu:
\(n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)\)
\(=n[n^2(n+1)+5n(n+1)+6(n+1)]\)
\(=n(n+1)(n^2+5n+6)=n(n+1)[n^2+2n+3n+6]\)
\(=n(n+1)[n(n+2)+3(n+2)]\)
\(=n(n+1)(n+2)(n+3)\)
Vì $n(n+1)(n+2)$ là tích 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)
\(\Rightarrow n(n+1)(n+2)(n+3)\vdots 3\)
Vì $n,n+1,n+2,n+3$ là 4 số nguyên liên tiếp nên trong đó chắc chắn có một số chia $4$ dư $2$ , một số chia hết cho $4$
\(\Rightarrow n(n+1)(n+2)(n+3)\vdots (2.4=8)\)
Mà $(3,8)=1$ nên \(n(n+1)(n+2)(n+3)\vdots (8.3=24)\)
Do đó: \(B=\frac{n(n+1)(n+2)(n+3)}{24}\in\mathbb{Z}\) (đpcm)