Bài tập cuối chương VI

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tập giá trị, khoảng đồng biến, khoảng nghịch biến của nó:

a) \(y =  - {x^2} + 6x - 9\)

b) \(y =  - {x^2} - 4x + 1\)

c) \(y = {x^2} + 4x\)

d) \(y = 2{x^2} + 2x + 1.\)

Hà Quang Minh
30 tháng 9 2023 lúc 23:42

a) \(y =  - {x^2} + 6x - 9\)

Ta có: \(a =  - 1\) nên parabol quay bề lõm xuống dưới.

Đỉnh \(I\left( {3;0} \right).\) Trục đối xứng \(x = 3.\) Giao điểm của đồ thị với trục \(Oy\) là: \(A\left( {0; - 9} \right).\) Parabol cắt trục hoành tại \(x = 3.\)

 

Tập giá trị của hàm số là: \(\left( { - \infty ;0} \right].\)

Từ đồ thị ta thấy: Hàm số \(y =  - {x^2} + 6x - 9\) đồng biến trên khoảng \(\left( { - \infty ;3} \right)\) và nghịch biến trên khoảng \(\left( {3; + \infty } \right).\)

b) \(y =  - {x^2} - 4x + 1\)

Ta có: \(a =  - 1\) nên parabol quay bề lõm xuống dưới.

Đỉnh \(I\left( { - 2;5} \right).\) Trục đối xứng \(x =  - 2.\) Giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;1} \right).\) Giao điểm của hàm số với trục \(Ox\) là: \(x =  - 2 + \sqrt 5 \) và \(x =  - 2 - \sqrt 5 .\)

Tập giá trị của hàm số là: \(\left( { - \infty ;5} \right].\)

Từ đồ thị ta thấy: Hàm số \(y =  - {x^2} - 4x + 1\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và nghịch biến trên khoảng \(\left( { - 2; + \infty } \right).\)

c) \(y = {x^2} + 4x\)

Ta có: \(a = 1 > 0\) nên parabol quay bề lõm lên trên.

Đỉnh \(I\left( { - 2; - 4} \right).\) Trục đối xứng \(x =  - 2.\) Giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;0} \right).\) Giao điểm của hàm số với trục \(Ox\) là: \(x = 0\) và \(x =  - 4.\)

 

Tập giá trị của hàm số là: \(\left[ { - 4; + \infty } \right).\)

Từ đồ thị ta thấy: Hàm số \(y = {x^2} + 4x\) đồng biến trên khoảng \(\left( { - 2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right).\)

d) \(y = 2{x^2} + 2x + 1\)

Ta có: \(a = 2 > 0\) nên parabol quay bề lõm lên trên.

Đỉnh \(I\left( { - \frac{1}{2};\frac{1}{2}} \right).\) Trục đối xứng \(x =  - \frac{1}{2}.\) giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;1} \right).\) Đồ thị hàm số không có giao điểm với trục \(Ox.\) Lấy điểm \(\left( {1;5} \right)\) thuộc đồ thị hàm số, điểm đối xứng với điểm đó qua trục đối xứng \(x =  - \frac{1}{2}\) là: \(\left( { - 2;5} \right).\)

Tập giá trị của hàm số là: \(\left[ {\frac{1}{2}; + \infty } \right).\)

Từ đồ thị ta thấy: Hàm số \(y = 2{x^2} + 2x + 1\) đồng biến trên khoảng \(\left( { - \frac{1}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - \frac{1}{2}} \right).\)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết