Trục đối xứng của hàm số là: \(x = \frac{5}{2}.\)
Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {\frac{5}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{2}} \right).\)
Chọn C.
Trục đối xứng của hàm số là: \(x = \frac{5}{2}.\)
Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {\frac{5}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{2}} \right).\)
Chọn C.
Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tập giá trị, khoảng đồng biến, khoảng nghịch biến của nó:
a) \(y = - {x^2} + 6x - 9\)
b) \(y = - {x^2} - 4x + 1\)
c) \(y = {x^2} + 4x\)
d) \(y = 2{x^2} + 2x + 1.\)
Tìm tập xác định của hàm số \(y = \frac{1}{{\sqrt {x - 2} }}\) là:
A. \(D = \left[ {2; + \infty } \right).\)
B. \(D = \left( {2; + \infty } \right).\)
C. \(D = \mathbb{R}\backslash \left\{ 2 \right\}.\)
D. \(D = \mathbb{R}.\)
Giải các bất phương trình sau:
a) \(2{x^2} - 3x + 1 > 0\)
b) \({x^2} + 5x + 4 < 0\)
c) \( - 3{x^2} + 12x - 12 \ge 0\)
d) \(2{x^2} + 2x + 1 < 0.\)
Parabol \(y = - {x^2} + 2x + 3\) có đỉnh là:
A. \(I( - 1;0).\)
B. \(I(3;0).\)
C. \(I\left( {0;3} \right).\)
D. \(I(1;4).\)
Một công ty bắt đầu sản xuất và bán một loại máy tính xách tay từ năm 2018. Số lượng loại máy tính đó bán được trong hai năm liên tiếp 2018 và 2019 lần lượt là 3,2 nghìn và 4 nghìn chiếc. Theo nghiên cứu dự báo thị trường của công ty, trong khoảng 10 năm từ năm 2018, số lượng máy tính loại đó bán được mỗi năm có thể mô tả bởi một hàm số bậc hai.
Giả sử t là thời gian (đơn vị theo năm) tính từ năm 2018. Số lượng loại máy đó bán đượng trong năm 2018 và 2019 lần lượt được biểu diễn bởi các điểm \((0;3,2)\) và \((1;4).\) Giả sử điểm \((0;3,2)\) là đỉnh của đồ thị của hàm số bậc hai này.
a) Lập công thức của hàm số mô tả số lượng máy xách tay bán được qua từng năm.
b) Tính số lượng máy tính xách tay đó bán được trong năm 2024.
c) Đến năm bao nhiêu thì số lượng máy tính xách tay đó bán được trong năm sẽ vượt mức 52 nghìn chiếc?
Tìm tập xác định của các hàm số sau:
a) \(y = \sqrt {2x - 1} + \sqrt {5 - x} \)
b) \(y = \frac{1}{{\sqrt {x - 1} }}.\)
Bất phương trình \({x^2} - 2mx + 4 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\) khi
A. \(m = - 1.\)
B. \(m = - 2.\)
C. \(m = 2.\)
D. \(m > 2.\)
Giải các phương trình sau:
a) \(\sqrt {2{x^2} - 14} = x - 1\)
b) \(\sqrt { - {x^2} - 5x + 2} = \sqrt {{x^2} - 2x - 3} .\)
Tập nghiệm của phương trình \(\sqrt {2{x^2} - 3} = x - 1\) là:
A. \(\left\{ { - 1 - \sqrt 5 ; - 1 + \sqrt 5 } \right\}.\)
B. \(\left\{ { - 1 - \sqrt 5 } \right\}.\)
C. \(\left\{ { - 1 + \sqrt 5 } \right\}.\)
D. \(\emptyset .\)