\(=2010-sin^2a-\dfrac{cos^2a}{sin^2a}\cdot sin^2a=2010-1=2009\)
\(=2010-sin^2a-\dfrac{cos^2a}{sin^2a}\cdot sin^2a=2010-1=2009\)
Chứng minh rằng: Giá trị của biểu thức sau không phụ thuộc vào giá trị của góc nhọn α:
\(\frac{cot^2\alpha-cos^2\alpha}{cot^2\alpha}+\frac{sin\alpha.cos\alpha}{cot\alpha}\)
Đơn giản biểu thức sau:
Q = \(sin^2\alpha+cot^2\alpha.sin^2\alpha\)
Cho alpha là góc nhọn. Tính giá trị bthuc: M= cot alpha + tan alpha/cot alpha - tan alpha. Biết sin alpha = 3/5
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào số đo của góc nhọn \(\alpha\)
\(\sin^4\alpha+\sin^2\alpha\cdot\cos^2\alpha+\cos^2\alpha\)
\(\frac{1}{1+\sin\alpha}+\frac{1}{1-\sin\alpha}-2\tan^2\alpha\)
Cho góc nhọn α. Chứng minh rằng:
Sinα< tanα và cosα<cotα.
cho biết cos alpha bằng 1/2 ( alpha là góc nhọn )
tính sin alpha,tan alpha , cot alpha
Cho \(cot\alpha=\dfrac{a^2-b^2}{2ab}\). Trong đó \(\alpha\) là góc nhọn, a>b>0. Tính \(cos\alpha\)
Giúp mình vs chiều phải nộp bài rồi
a)C= \(4\cos^2\alpha-3\sin^2\alpha.cos=\frac{4}{7}\)
b)\(\cos^2\alpha+\cos^2\beta+\cos^2\alpha.\sin^2\beta+\sin^2\alpha\)
c)2\(\left(\sin\alpha-\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha.\cos\alpha\right)\)
d)\(\left(\tan\alpha-\cot\alpha\right)^2-\left(\sin\alpha+\cot\alpha\right)^2\)
CMR:\(1,\tan\alpha\cdot\cot\alpha=1\)
\(2,\sin^2\alpha+\cos^2\alpha=1\)
\(3,\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha};\cot\alpha=\dfrac{\cos\alpha}{\tan\alpha}\)