Xét các số thực a,b,c với \(b\ne a+c\) sao cho PT bậc 2 \(ax^2+bx+c=0\) có 2 nghiệm thực m,n thỏa mãn \(0\le m,n\le1\). Tìm GTLN và GTNN của biểu thức
\(M=\dfrac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)
Cho a>=0, b>=0, c>=0, a+b+c=1
Tìm GTLN của M=\(\sqrt{2a^2+3a+4}+\sqrt{2b^2+3b+4}+\sqrt{2c^2+3c+4}\)
cho biểu thức \(P=a^4+b^4-ab\), với a,b là các số thực thỏa mãn \(a^2+b^2+ab=3\)
tìm Min và MAx của biểu thức P
Cho a,b,c>0 và \(a,b,c\le\dfrac{3}{4}\)
Tìm giá trị nhỏ nhất của S= \(a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
giúp :)
Tìm giá trị nhỏ nhất của biểu thức:
a,A=\(\dfrac{x+1}{\sqrt{x}-2}\) với x>4
b,B=\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ac}{b^2a+b^2c}+\dfrac{ab}{c^2a+c^2b}\) với a,b,c>0 và abc=1
Cho các số thực: 0\(\le\)a\(\le\)1; 0\(\le\)b\(\le\)1; 0\(\le\)c\(\le\)1 thoả mãn:
\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\)
Chứng minh: \(a^2+b^2+c^2=\dfrac{3}{2}\)
Cminh với a,b,c dương
\(\dfrac{2a}{b+c}\)+\(\dfrac{2b}{a+c}\)+\(\dfrac{2c}{a+b}\)+\(\dfrac{ab+bc+ca}{a^2+b^2+c^2}\) ≥ 4
Cho a,b,c >0 thỏa mãn : \(a^2+b^2+c^2=abc\\\) .Tìm max của biểu thức :
\(P=\dfrac{a}{a^2+bc}+\dfrac{b}{b^2+ca}+\dfrac{c}{c^2+ab}\)
Cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3\).Tìm Max:
\(P=\dfrac{a}{a^2+4a+3}+\dfrac{b}{b^2+4b+3}+\dfrac{c}{c^2+4c+3}\)