Viết phương trình mặt phẳng đi qua điểm P(4;0;-2),Q(5;1;7) và song song với trục Ox
Viết phương trình mặt phẳng đi qua điểm Q(3;-2;-7) và song song với mặt phẳng (\(\pi\)) : 2x-3y+5=0
VIẾT phương trình mặt phẳng địa điểm M(2;-5;3) và song song với mặt phẳng (xOz)
Cho hình hộp ABCD.A'B'C'D'. Trên cạnh AB lấy điểm M khác A và B. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (ACD').
a) Trình bày cách dựng thiết diện của hình hộp và mặt phẳng (P)
b) Xác định vị trí của M để thiết diện nói trên có diện tích lớn nhất
cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm cạnh AB, CD, E là điểm chia BC theo tỉ số BE/BC=1/2. Trên đoạn thẳng AM lấy điểm H. Tìm giao tuyến của mặt phẳng (P) đi qua H và song song với mặt phẳng (MNE). Tìm giáo tuyến của mặt phẳng (P) và mặt phẳng (BCD); mặt phẳng (P) và mặt phẳng (ABD)
Cho hình hộp A'B'C'D'.ABCD, xác định tiết diện của hình hộp tạo bởi mặt phẳng P đi qua điểm M bất kì nằm trên cạnh BC và mặt phẳng P song song với mặt phẳng ACD'
Cho mặt phẳng (P) : 4x -y +3z +1 = 0 và các điểm A(-1;6;3),B(3;-2;-5),C(0;4;1), D(2;0;5),E(2;7;0)và F(0;1;0). Xét điểm mặt phẳng (P) có đi qua các điểm trên hay không ?
Trong mặt phẳng Oxy có d: x+y-4=0. Viết phương trình d' là ảnh của d qua phép đồng dạng có được bằng cách thực hiện phép bị tự tâm I(-2;-2) tỉ số \(k=\dfrac{1}{2}\) và tịnh tiến theo \(\overrightarrow{v}\left(1;1\right)\)
Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh hình nón và cắt hình nón theo một thiết diện là tam giác vuông SAB có diện tích bằng 4a2. Góc giữa trục SO và mặt phẳng (SAB) bằng 30°. Diện tích xung quanh của hình nón đã cho bằng