cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm cạnh AB, CD, E là điểm chia BC theo tỉ số BE/BC=1/2. Trên đoạn thẳng AM lấy điểm H. Tìm giao tuyến của mặt phẳng (P) đi qua H và song song với mặt phẳng (MNE). Tìm giáo tuyến của mặt phẳng (P) và mặt phẳng (BCD); mặt phẳng (P) và mặt phẳng (ABD)
Cho hình chóp S.ABCD có đáy ABCD là tứ giác không phải hình thang.Gọi M, N là các điểm lần lượt nằm trên các cạnh SD, SC. Tìm giao điểm của: a, AM và mặt phẳng (SBC) b, MN và mặt phẳng (SAB)
Cho hình chóp S.ABCD có đáy ABCD là tứ giác không phải hình thang.Gọi M, N là các điểm lần lượt nằm trên các cạnh SD, SC. Tìm giao điểm của: a, AM và mặt phẳng (SBC) b, MN và mặt phẳng (SAB)
Cho hình chóp S.ABCD có đáy ABCD là tứ giác không phải hình thang.Gọi M, N là các điểm lần lượt nằm trên các cạnh SD, SC. Tìm giao điểm của:
a, AM và mặt phẳng (SBC)
b, MN và mặt phẳng (SAB)
cho 4 điểm A,B,C,D không nằm trên một mặt phẳng . Gọi I,J lần lượt là trung điểm của AD,BC .Chứng minh rằng : IB và JA không nằm trên cùng một mặt phẳng
Cho hình hộp ABCD.A'B'C'D'. Trên cạnh AB lấy điểm M khác A và B. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (ACD').
a) Trình bày cách dựng thiết diện của hình hộp và mặt phẳng (P)
b) Xác định vị trí của M để thiết diện nói trên có diện tích lớn nhất
Cho tứ diện ABCD có các cạnh bằng nhau và bằng a.Gọi E là trung điểm AB,F là điểm thuộc BC sao cho BF=2FC, G là điểm thuộc cạnh CD sao cho CG=2GD.Tính độ dài đoạn giao tuyến của mặt phẳng (EFG) với mặt phẳng (ACD) theo a?
Viết phương trình mặt phẳng đi qua điểm Q(3;-2;-7) và song song với mặt phẳng (\(\pi\)) : 2x-3y+5=0
Cho hình chóp S.ABCD có AC và BD cắt nhau tại E; AB và CD cắt nhau tại F. Gọi M, N lần lượt là các điểm trên các đoạn thẳng SA,SB sao cho đường thẳng MN cắt đường thẳng SF, AB tại hai điểm khác nhau. Tìm giao tuyến của mặt phẳng (EMN ) với các mặt của hình chóp đã cho