cho biểu thức : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}\) với a>0 ; b>0 ; a khác b
a. CM : P=1/ab
b. giả sử a,b thay đổi sao cho \(4a+b+\sqrt{ab}=1\) . Tìm min P
Cho a,b>0 thỏa mãn a+b=1
Tìm min\(\frac{1}{a^2+b^2}\)+\(\frac{6}{a^2+b^2}\)+2011(\(a^4\)+\(b^4\))
1. Tìm các số nguyên tố a,b,c sao cho a.b.c=3(a+b+c)
2. Tìm số nguyên tố p sao cho 2p+1 là lập phương của 1 số nguyên tố
3. Cho a,b,c >0 . Cm \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Câu 1: (4 điểm)
1. Cho phân thức:\(\left(\frac{3x^2+3}{x^3-1}-\frac{x-1}{x^2+x+1}-\frac{1}{x-1}\right)\times\frac{x-1}{2x^2-5x+5}\)
a) Rút gọn B. b) Tìm giá trị lớn nhất của B.
2. Cho a, c, b là 3 số hữu tỷ khác 0 thỏa mãn a + b + c = 0. Chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\) Từ đó suy ra \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) là bình phương của một số hữu tỷ.
cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
Chứng minh rằng ít nhất 1 trong 3 số a,b,c là bình phương của 1 số hữu tỉ
Rút gọn :
a) \(\left(a-\frac{a^2+b^2}{a-b}\right).\left(\frac{1}{b}+\frac{2}{a+b}\right)\)
b) \(\left(\frac{3a+1}{a^2-3a}+\frac{3a-1}{a^2+3a}\right).\frac{a^2-9}{a^2+1}\)
Rút gọn \(B=\left(1+\frac{b^2+c^2-a^2}{2bc}\right).\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}\times\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
cho a,b khác 0 thỏa mãn a+b
a, \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\cdot\left(a\cdot b-2\right)}{a^2\cdot b^2+3}\)
b, \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\cdot\left(b-a\right)}{a^2\cdot b^2+3}\)
Cho a,b,c>0.CM:
\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)