góc A+góc BSM
=1/2(sđ cung CN-sđcung BM)+1/2(sđ CN+1/2sđ cung BM)
=sđ cung CN
=2*góc CMN
góc A+góc BSM
=1/2(sđ cung CN-sđcung BM)+1/2(sđ CN+1/2sđ cung BM)
=sđ cung CN
=2*góc CMN
Qua điểm A nằm bên ngoài đường tròn (O) vẽ hai cát tuyến ABC và AMN sao cho hai đường thẳng BN và CM cắt nhau tại một điểm S nằm bên trong đường tròn. Chứng minh \(\widehat{A}+\widehat{BSM}=2.\widehat{CMN}.\)
Bài 4: Từ điểm P nằm ngoài đường tròn (O), kẻ hai cát tuyến PAB và PCD (A nằm giữa P và B, C nằm giữa P và D), các đường thẳng AD và BC cắt nhau tại Q
a. Cho biết P = 60 độ và góc AQC = 80 độ tính góc BDC
b. Chứng minh: PA.PB = PC.PD
Từ một điểm A ở bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giữa A và D). Tia phân giác của góc CBD cắt đường tròn tại m, cắt CD tại E và cắt tia phân giác của góc BAC tại H. Chứng minh rằng:
a) AH ⊥ BE
b) MD2=MB.ME
Các bạn giúp mik vs ạ
hai tiếp tuyến a và b của đường tròn O cắt nhau tại M đường thẳng vuông góc với OA tại O cắt MB tại C Chứng minh CM = CO
Qua điểm M nằm bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến MAB của đường tròn . Tia phân giác của góc ACB cắt dây AB tại I. Chứng minh MC=MI
cho (O), lấy M nằm ngoài đường tròn. Từ M kẻ 2 tiếp tuyến MA và MB của (O). A,B là tiếp điểm. Biết cát tuyến MCD cắt (O) tại C và D (MC < MD); Góc AOC=70 độ; Góc DCB=30 độ. Tính góc AMD=?
cho o r từ s nằm ngoài đường tròn tâm o kẻ các tiếp tuyến sa và sa' cát tuyến sbc với (o) phân giác góc bac cắt bc tại d cắt (o) tại e gọi h là giao điểm của os và aa' g,f là giao điểm oe và aa' với bc chứng minh sa=sd,sa2=sf.sg
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lây một điểm M . Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S a. chứng minh ES=EM b. biết góc ESM=65 độ .tính sđ cung BM c.biết sđ cung BM =40 độ . tính góc E
Qua điểm S nằm bên ngoài đường tròn (O), vẽ tiếp tuyens SA và cát tuyens SBC của đường tròn. Tia phân giác của góc BAC cắt dây BC tại D. Chứng minh SA = SD.