Tổng 4 góc của tứ giác là 360
=> A + D= 360 -B-C= 360-150-90=120
Ta có: A=2D (1)
Thế (1) vào A+D=120, ta có:
2D+D =120 => 3D=120 =>D=120:3=40
Tổng 4 góc của tứ giác là 360
=> A + D= 360 -B-C= 360-150-90=120
Ta có: A=2D (1)
Thế (1) vào A+D=120, ta có:
2D+D =120 => 3D=120 =>D=120:3=40
Cho tứ giác thường abcd có ab=4cm, cd =5cm, chu vi abcd = 25cm, tính tổng hai đường chéo tứ giác. bd + ac =?
(toán lớp 3 olimpic)
Cho tứ giác ABCD có A = C = 90 độ. Vẽ CH vuông góc AB. Biết rằng đường chéo AC là đường phân giác góc A và CH = 6 cm. Tính diện tích tứ giác ABCD
cho tứ giác ABCD có diện tích là S. điểm O bất kì trong tứ giác. CMR:
\(OA^2+OB^2+OC^2+OD^2\ge2S\). dấu "=" xảy ra khi nào?
Cho hình bình hành ABCD có E, F lần lượt là trung điểm của AB và CD. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N
a) CM: các tứ giác DEBF, EMFN là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để tứ giác MENF là hình thoi
Cho tứ giác ABCD có^BCD=^BDC=50 độ , ^ACD=^ADB=30 độ. Gọi I là giao điểm của AC và BD. chứng minh tam giác ABI cân.
Cho tứ giác ABCD có AD=BC và AB<CD. Trung điểm của cạnh AB và CD lần lượt là
M và N. Trung điểm của các đường chéo BD và AC lần lượt là P và Q.
a) Chứng minh tứ giác MPNQ là hình thoi
b) Kéo dài hai cạnh DA và CB cắt nhau tại G, kẻ tia phân giác Gx của góc AGB. Chứng
minh Gx//MN.
Cho tứ giác ABCD. Gọi K là trung điểm AB, I là trung điểm CD. Biết KI=1/2CD. CHứng minh: AD+BC≥CD
Cho hình chữ nhật ABCD. Có O là giao điểm 2 đường chéo AC và BC , Gọi M là TĐ của CD.
a) C/m: AOMD là hình thang vuông.
b) Đường thẳng qua A và song song vs BD cắt đường thẳng OM tại N. C/m tứ giác ANOD là hbh.
Cho hình vuông ABCD. Gọi M là trung điềm AB; N là trung điểm CD.
a) Tứ giác BMDN là hình gì? Vì sao?
b) Chứng minh: \(S_{ADM}=\dfrac{1}{4}.S_{ABCD}\)
c) Gọi trung điểm BC là P, AP cắt BN lại I. Chứng minh DI=AB