Cho đường tròn tâm (O). Từ điểm S ở ngoài đường tròn (O) kẻ các tiếp tuyến SA và SB với (O) (A, B là các tiếp điểm). Kẻ cát tuyến SCD không đi qua tâm O (C nằm giữa S và D). Gọi I là trung điểm của CD.a/ Chứng minh các điểm S, A, I, O, B cùng nằm trên một đường tròn.b/ Chứng minh IS là đường phân giác của góc AIB.c/ Gọi M là giao điểm của hai đường thẳng SO và AB; N là giao điểm của hai đường thẳng SD và AB. Chứng minh MC.ND = NC.MD
![]()
![]()
![]()
Từ điểm P nằm ngoài đường tròn (O;R), Vẽ cát tuyến PAB không qua O (A nằm giữa P và B), từ A và B vẽ hai tiếp tuyến của (O) cắt nhau tại M. Hạ MH vuông góc với OP. a/ Giả sử OP=2R. Tính độ dài OH . B/ MH cắt (O) tại N (H nằm giữa M và N). chứng minh PN là tiếp tuyến của (O).
Từ điểm A nằm ngoài đường tròn tâm O , vẽ các tiếp tuyến AB và AC với đường tròn đó ( B và C là tiếp điểm ) . vẽ cát tuyến ADE ( D nằm giũa A và E ) . gọi I là trung điểm của DE a.chứng minh 5 điểm O B Á C I cùng thuộc một đường tròn b.CM IA là phân giác của góc CIB c.cho bt OA=2R Tính diện tích hình giới hạn bởi OB BA AC và cung nhỏ của BC
Cho đường tròn O bán kính R và 2 điểm A,B thuộc đường tròn sao cho góc AOB =60°. vẽ các tiếp tuyến tại A và B với đường tròn O cắt nhau tại S.
a. Chứng minh tứ giác OASB nội tiếp
b. Qua S kẻ cát tuyến SMN ( M nằm giữa S và N). chứng minh SM.SN=SB^2
Giúp mình vs
Cho điểm M nằm ngoài đường tròn (O; R). Vẽ tiếp tuyến MA ( A là tiếp điểm), cát tuyến MBC ( B nằm giữa M và C) và O nằm trong góc AMC. Vẽ OK vuông góc BC tại K . a) CM : tứ giác MAOK nội tiếp đường tròn. Xác định tâm và bán kính đường tròn này.
b) vẽ dây cung AI // BC . CM góc IAK + góc AMO = 90 độ.
c) IK cắt (o) tại điểm thứ hai là D. CM MD là tiếp tuyến (o).
Helppp meeeeeee
Từ điểm A nằm bên ngoài đường tròn (O ) vẽ hai tiếp tuyến AB, AC lần lượt tại B, C của (O ) .
1) Chứng minh tứ giác ABOC nội tiếp đường tròn.
2) Vẽ hai đường kính BD, CE của (O ) , gọi I là giao điểm của AO và BC, gọi F là giao điểm của đường thẳng DI và (O ) , với F khác D. Chứng minh ba điểm A, E, F thẳng hàng.
giúp vs ạ!!!
Cho đường tròn tâm O , bán kính R . Từ điểm C nằm ngoài tròn kế tiếp tuyến CA , CB và cát tuyến CMN với đường tròn (O) (A , B là hai tiếp điểm , M nằm giữa C và N ) . Gọi H là giao điểm của CO và AB.
a. Cm tứ giác AOBC nội tiếp.
b. Cmr : CH . CO = CM . CN
c.Tiếp tuyến tại M cuả đường tròn (O) cắt CA , CB theo thứ tự tại E và F.Đường vuông góc với CO tại O cắt CA, CB theo thứ tự là P,Q. Cm : ∠POE =∠OFQ
d. Cmr : PE + QF ≥ PQ
Cho điểm M nằm ngoài đường trong (O; R) sao cho OM = 2R. Qua M vẽ hai tiếp tuyến MA, MB với đường tròn (O; R) (A, B là các tiếp điểm) và kẻ cát tuyến MCD của đường tròn (O; R) cắt đoạn thẳng OA (C nằm giữa M và D). Gọi I là trung điểm của dây cung CD và H là giao điểm của AB với OM.
a) Góc MAB có phải là góc tạo bởi tia tiếp tuyến và dây cung của (O) ? vì sao?
b) Tính góc MOA và số đo cung AB
c) Chứng minh: MC.MD=MH.MO
d) Chứng minh HA là phân giác của góc DHC
e) Khi cát tuyến MCD thay đổi thì trọng tâm tam giác ACD chạy trên đường nào?
Giải giúp mình câu e với, mình cảm ơn.
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB và cát tuyến MCD với đường tròn (O), trong đó điểm C ở giữa hai điểm M, D. Đường thẳng qua điểm C và vuông góc với OA cắt AB tại H. Gọi I là trung điểm của dây CD.
Chứng minh : HI // AD