Từ điểm P nằm ngoài đường tròn (O;R) kẻ 2 tiếp tuyến PA và PB (A, B là các tiếp điểm ) . Trên dây AB lấy M bất kì. Qua M kẻ đường vuông góc với OM cắt PA tại S, PB tại Q. CM: MS=MQ
Giúp mik vs ạ, mik đang cần gấp
cho điểm a nằm ngoài đường tròn (o;r) . kẻ tiếp tuyến ab (b là tiếp điểm ) . qua b kẻ bh vuông góc ao (h thuộc ao) và cắt (O) tại P
a) oa.oh có giá trị ko đổi
b) AD là tiếp tuyến (O)
c) KẺ AO cắt (O) tại M,N (M giữa A,N) . cm: AM là phân giác của góc ABP
Cho đường tròn tâm O bán kính R và đường thẳng d cố định không cắt đường tròn . Từ điểm A bất kì trên đường thẳng d kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm) . Từ B kẻ đường thẳng vuông góc với OH tại H , trên tia đối của tia HB lấy điểm C sao cho HC=HB.
A,Chứng minh điểm C thuộc (O;R) và AC là tiếp tuyến của đường tròn (O)
B,Từ O kẻ đường thẳng vuông góc với đường thẳng d tại I , OI cắt BC tại IC. Chứng minh OH.OA=OI.OK=R^2
Bài 14: Cho đường tròn (O;R) Lấy M cách O một khoảng cách = 2R. Từ M kẻ các tiếp tuyến MA và MB với đường tròn (A và B là các tiếp điểm). Đoạn thẳng OM cắt đường tròn (O) tại C. Đường Thẳng qua O và vuông góc với OB cắt OA tại D. Đường thẳng DC cắt MB tại điểm E.
a) Chứng minh Tam giác MAB là Tam giác đều
b) Chứng minh rằng Tam giác DMO cân tại D
c) Chứng minh rằng DE là tiếp tuyến của đường tròn (O)
Từ điểm A ở bên ngoài đtròn (O), kẻ 2 tiếp tuyến AB, AC đến đtròn (O)(B,C Là 2 tiếp điểm). Từ O kẻ đường thẳng vuông góc với OC cắt Ab tại E. Từ A kẻ AD vuông góc với tia OE ( D thuộc tia OE).a) Cm: OA đi qua trung điểm của H và 4 điểm A, B, O, C cùng thuộc 1 đtròn.b) Kẻ đk HK. Cm: CK // OA và tam giác EOA cân.c) Gọi M, N lần lượt là trung điểm của OD và AH. Cm: OM.AB = OA.AN
từ điểm A nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến AB và AC ( B,C là các tiếp điểm ). gọi M là điểm bất kỳ trên cung nhỏ BC của đường tròn ( O ) ( M khác B và C ). Tiếp tuyến tại M cắt AB và AC tại E,F, đường thẳng BC cắt OE và OF ở P và Q. tìm M để diện tích OPQ min
cho đường tròn tâm O bán kính R và điểm S nằm ngoài đờng tròn. từ S kẻ các tiếp tuyến SA, SB( A, B là các tiếp điểm ) kẻ đường kính AC của đường tròn (O). tiếp tuyến tại C cắt AB tại E.
Cm: OE vuống góc với SC
Cho đường tròn tâm O và M là điểm ở ngoài đường tròn . Qua M kẻ tiếp tuyến MP , MQ ( Q , P là 2 tiếp điểm ) và mốt cát tuyến cắt đường tròn tại A và B
a. Gọi I là trung điểm AB. CM 4 điểm P,Q,O,I nằm trên 1 tròn
b.PQ cắt AB tại E. CM MP.MP = ME.MI
C. Qua A kẻ 1 đường thẳng song song với MP cắt PQ , PB lần lượt tại H,K.CM tứ giác AHIQ nội tiếp và KB = 2.HI
cho đtròn o và 1 dây AB khác đường kính, từ O kẻ OH vuông góc với AB tại H, tiếp tuyến tại A của đtròn cắt OH tại M; kẻ đường kính Bc, qua M kẻ đường thẳng vuông góc với MO, cắt CA ở N. Chứng minh:
a. MA2=MH.MO
b. cm AHMN là hcn và CH vuông góc vuông góc với NB.
c.MO cắt đtròn tại E và F ( E nằm giữ M và O).cm ME.HF=MF.EH