trục căn thức:
a,\(\dfrac{a-1}{\sqrt{ }a-1}\)
b,\(\dfrac{a-b}{\sqrt{ }a-\sqrt{ }b}\)
c,\(\dfrac{a+4\sqrt{a+4}}{\sqrt{ }a+2}\)
d,\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{ }a-\sqrt{ }b}\)
e,\(\dfrac{1+a\sqrt{a}}{1+\sqrt{ }a}\)
f,\(\dfrac{1-a\sqrt{a}}{1-\sqrt{ }a}\)
g,\(\dfrac{a\sqrt{a+b\sqrt{b}}}{\sqrt{ }a+\sqrt{ }b}\)
h,\(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{ }b}\)
i,\(\dfrac{1-\sqrt{a}}{1+\sqrt{ }a}\)
k,\(\dfrac{\sqrt{x+}\sqrt{y}}{\sqrt{ }x-\sqrt{ }y}\)
l,\(\dfrac{\sqrt{a}+1}{\sqrt{ }a-1}\)
m,\(\dfrac{1
}{\sqrt{ }3+\sqrt{ }2+1}\)
n,\(\dfrac{2\sqrt{3}}{\sqrt{ }2+\sqrt{ }3+\sqrt{ }5}\)
v,\(\dfrac{\sqrt{6}}{3+\sqrt{ }2-\sqrt{ }3}\)
r,\(\dfrac{2\sqrt{3}}{\sqrt{ }5+\sqrt{ }6+\sqrt{ }7}\)
s,\(\dfrac{1}{2+\sqrt{ }3+\sqrt{ }6}\)
\(a>\dfrac{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\sqrt{a}+1\)
\(b>\dfrac{\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}=\sqrt{a}+\sqrt{b}\)
\(c>\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}=\sqrt{a}+2\)
\(e>\dfrac{\left(1+\sqrt{a}\right).\left[1^{2-\sqrt{a}+\left(\sqrt{a}\right)^2}\right]}{1+\sqrt{a}}=1-\sqrt{a}+a\)
\(f>=1+\sqrt{a}+a\)
\(h>=\dfrac{\left(\sqrt{a}-\sqrt{b}\right).\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}=a+\sqrt{ab}+b\)