Bài 1: Cho A = \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
So sánh A với 1
Bài 2: Tính
A = \(\left(\dfrac{3}{\sqrt{2}+1}+\dfrac{14}{2\sqrt{2}-1}-\dfrac{4}{2-\sqrt{2}}\right).\left(\sqrt{8}+2\right)\)
Bài 3: Tính tổng
S=\(\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfrac{1}{\sqrt{4}+\sqrt{5}}+...+\dfrac{1}{\sqrt{2018}+\sqrt{2019}}\)
Bài 1:Với mọi n∈N*,ta có:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Do đó :
A=\(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
Bài 2:
\(A=\left(3\sqrt{2}-3+4\sqrt{2}+2-4-2\sqrt{2}\right)\cdot\left(2\sqrt{2}+2\right)\)
\(=\left(5\sqrt{2}-5\right)\left(2\sqrt{2}+2\right)\)
=10