Gọi \(E=BN\cap AD\Rightarrow D\) là trung điểm của AE.
Dựng \(AH\perp BN\) tại H \(\Rightarrow AH=d\left(A;BN\right)=\frac{8}{\sqrt{5}}\)
Trong tam giác vuông ABE : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AE^2}=\frac{5}{4AB^2}\Rightarrow AB=\frac{\sqrt{5}.AH}{2}=4\)
\(B\in BN\Rightarrow B\left(b;8-2b\right)\left(b>2\right)\)
\(AB=4\Rightarrow B\left(3;2\right)\)
Phương trình AE : \(x+1=0\)
\(E=AE\cap BN\Rightarrow E\left(-1;10\right)\Rightarrow D\left(-1;6\right)\Rightarrow M\left(-1;4\right)\)
Gọi I là tâm của (BKM) => I là trung điểm của BM => I(1;3)
\(R=\frac{BM}{2}=\sqrt{5}\)
Vậy phương trình đường tròn : \(\left(x-1\right)^2+\left(y-3\right)^2=5\)