Dựng \(\overrightarrow{AB}=\overrightarrow{BD}\)
\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-3;-2\right)\)
\(\overrightarrow{BD}=\left(x_D-x_B;y_D-y_B\right)=\left(x_D-1;y_D-4\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D-1=-3\\y_D-4=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=-2\\y_D=2\end{matrix}\right.\)
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\cos\left(\overrightarrow{BD};\overrightarrow{BC}\right)=\dfrac{-3\cdot6+\left(-2\right)\cdot\dfrac{-5}{2}}{\sqrt{\left(-3\right)^2+\left(-2\right)^2}\cdot\sqrt{6^2+\left(-\dfrac{5}{2}\right)^2}}\)
\(=\dfrac{\left(-18+5\right)}{\sqrt{13}\cdot\sqrt{\dfrac{13}{2}}}-\sqrt{2}\)
\(\Leftrightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=45^0\)