a: P thuộc Ox nên P(x;0)
\(PM=\sqrt{\left(-2-x\right)^2+\left(2-0\right)^2}=\sqrt{\left(x+2\right)^2+4}\)
\(PN=\sqrt{\left(4-x\right)^2+\left(1-0\right)^2}=\sqrt{\left(x-4\right)^2+1}\)
Vì PM=PN
nên (x+2)^2+4=(x-4)^2+1
=>x^2+4x+8=x^2-8x+17
=>12x=9
=>x=3/4
b: \(\overrightarrow{OM}=\left(-2;2\right);\overrightarrow{ON}=\left(4;1\right)\)
\(cos\widehat{MON}=\dfrac{-2\cdot4+2\cdot1}{\sqrt{\left(-2\right)^2+2^2}\sqrt{4^2+1^2}}=\dfrac{-3\sqrt{34}}{34}\)