Trong hệ tọa độ Oxyz, lập phương trình tham số của đường thẳng :
a) Đi qua hai điểm \(A\left(1;0;-3\right);B\left(3;-1;0\right)\)
b) Đi qua điểm \(M\left(2;3;-5\right)\) và song song với đường thẳng \(\Delta\) có phương trình :
\(\left\{{}\begin{matrix}x=-2+2t\\y=3-4t\\z=-5t\end{matrix}\right.\)
Trong hệ tọa độ Oxyz, viết phương trình đường thẳng \(\Delta\) vuông góc với mặt phẳng tọa độ (Oxz) và cắt hai đường thẳng :
\(d:\left\{{}\begin{matrix}x=t\\y=-4+t\\z=3-t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=1-t'\\y=-3+t'\\z=4-5t'\end{matrix}\right.\)
Trong không gian Oxyz, cho điểm \(A\left(-4;-2;4\right)\) và đường thẳng \(d:\left\{{}\begin{matrix}x=-3+2t\\y=1-t\\z=-1+4t\end{matrix}\right.\)
Viết phương trình đường thẳng \(\Delta\) đi qua điểm A, cắt và vuông góc với đường thẳng d ?
Trong hệ tọa độ Oxyz, cho điểm \(A\left(-1;2;-3\right)\), vectơ \(\overrightarrow{a}=\left(6;-2;-3\right)\) và đường thẳng d có phương trình :
\(\left\{{}\begin{matrix}x=1+3t\\y=-1+2t\\z=3-5t\end{matrix}\right.\)
a) Viết phương trình mặt phẳng \(\left(\alpha\right)\) chứa điểm A và vuông góc với giá của \(\overrightarrow{a}\)
b) Tìm giao điểm M của d và \(\left(\alpha\right)\)
c) Viết phương trình đường thẳng \(\Delta\) đi qua điểm A, vuông góc với giá của \(\overrightarrow{a}\) và cắt đường thẳng d
Trong hệ tọa độ Oxyz, cho mặt \(\left(\alpha\right)\) có phương trình \(3x+5y-z-2=0\) và đường thẳng d có phương trình :
\(\left\{{}\begin{matrix}x=12+4t\\y=9+3t\\z=1+t\end{matrix}\right.\)
a) Tìm giao điểm M của đường thẳng d và mặt phẳng \(\left(\alpha\right)\)
b) Viết phương trình mặt phẳng \(\left(\beta\right)\) chứa điểm M và vuông góc với đường thẳng d
Viết phương trình mặt phẳng \(\left(\alpha\right)\) tiếp xúc với mặt cầu :
\(\left(S\right):x^2+y^2+z^2-10x+2y+26z+170=0\)
và song song với hai đường thẳng :
\(d:\left\{{}\begin{matrix}x=-5+2t\\y=1-3t\\z=-13+2t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=-7+3t'\\y=-1-2t'\\z=8\end{matrix}\right.\)
Cho hai đường thẳng :
\(\Delta_1:\dfrac{x}{2}=\dfrac{y+2}{3}=\dfrac{z}{4}\)
và
\(\Delta_2:\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=1+2t\end{matrix}\right.\)
a) Viết phương trình mặt phẳng \(\left(\alpha\right)\) chứa \(\Delta_1\) và song song với \(\Delta_2\)
b) Cho điểm \(M\left(2;1;4\right)\). Tìm tọa điểm H thuộc đường thẳng \(\Delta_2\) sao cho đoạn thẳng MH có độ dài nhỏ nhất ?
Trong hệ tọa độ Oxyz, cho điểm \(M\left(2;1;0\right)\) và mặt phẳng \(\left(\alpha\right):x+3y-z-27=0\) tìm tọa độ điểm M' đối xứng với M qua \(\left(\alpha\right)\) ?
18. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(3;-4;0\right)\) , \(B\left(0;2;4\right)\) , \(C\left(4;2;1\right)\) . Tìm tọa độ điểm D thuộc trục Ox sao cho AD = BC
A. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)
B. \(D\left(0;-6;0\right)\)
C. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(-6;0;0\right)\end{matrix}\right.\)
D. \(D\left(6;0;0\right)\)
11. Trong không gian với hệ tọa Oxyz, mặt cầu \(\left(S\right):\) \(x^2+y^2+z^2-2x+4y-4=0\) cắt mp \(\left(P\right):\) \(x+y-z+4=0\) theo giao tuyến đường tròn \(\left(C\right)\) . Tính diện tích S của đường tròn \(\left(C\right)\)
A. \(S=\frac{2\pi\sqrt{78}}{3}\)
B. \(S=2\pi\sqrt{6}\)
C. \(S=6\pi\)
D. \(S=\frac{26\pi}{3}\)
14. Trong không gian Oxyz, mặt cầu tâm \(I\left(1;2;-1\right)\) cắt mp \(\left(P\right):\) \(x-2y-2z-8=0\) theo một đường tròn có bán kính bằng 4 có pt là
A. \(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=5\)
B. \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=9\)
C. \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\)
15. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(2;-1;3\right)\) , \(B\left(4;0;1\right)\) , \(C\left(-10;5;3\right)\) Vecto nào dưới đây là VTPT của mp \(\left(ABC\right)\)
A. \(\overrightarrow{n_1}\left(1;2;0\right)\)
B. \(\overrightarrow{n_2}\left(1;2;2\right)\)
C. \(\overrightarrow{n_3}\left(1;8;2\right)\)
D. \(\overrightarrow{n_4}\left(1;-2;2\right)\)
D. \(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=3\)