Cho đường tròn tâm O có đường kính CD lấy điểm K trên tia đối của tia CD (K khác C) Kẻ tiếp tuyến KA với đường tròn(A là tiếp điểm) Trên cung nhỏ Cx lấy điểm E khác C,A. Gọi F là giao điểm thứ hai của KE với đường tròn và H là hình chiếu vuông góc của A lên KO.
1) Chứng minh KH.KO=KA^2
2)Chứng minh EFOH nội tiếp
3)Chứng minh HA là phân giác góc EHF
4) Gọi I là giao điểm của DE và CF. Chứng minh I thộc một đường thẳng cố định khi E thay đổi thỏa mãn đề bài.
Các bạn làm giúp mk câu 4 với nha mấy câu trên mk lm được rồi thank
Cho đường tròn (O;R). Lấy K là 1 điểm bên ngoài đường tròn, vẽ 2 tiếp tuyến KA và KB. Gọi M là giao điểm của AB và OK, đường thẳng qua M // với KB cắt cung nhỏ AB tại C. Tia KC cắt đường tròn (O) tại D ( D khác C) , cắt AB tại I, gọi H là trung điểm của CD.
a, C/m: 5 điểm K, A, O, H, B cùng thuộc 1 đường tròn
b, C/m: Tứ giác ODAI nội tiếp
c, C/m: OM.OK + KC.KD = KO2
d, C/m: MA là phân giác của góc CMD
e, Cho R = 5cm, KO = 10cm. Tính diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB
Trên ( O;R), vẽ đường kính AB. lấy C thuộc (O) sao cho AC=R và lấy điểm D bất kì trên cung nhỏ BC (D ko trùng với B,C ). Gọi E là giao điểm của AD và BC. Đường thẳng đi qua E vuông góc với đưởng thẳng AB tại H. C/m tứ giác AHEC là tứ giác nội tiếp
Giúp mik với :((( Cho đường tròn tâm O bán kính R và hai đường kính AB, CD vuông góc với nhau. Điểm M bất kì thuộc cung nhỏ BC (với M khác B và C). Gọi I là giao điểm của AM và BC, J là hình chiếu của I trên AB. Chứng minh rằng: a) Tứ giác BMIJ là tứ giác nội tiếp b) JI là phân giác của góc CJM c) J, M, D thẳng hàng
Nếu đc thì các bạn vẽ hình giúp mik với ;-;
Mik cảm ơn ;-;
Cho nửa đường tròn tâm O đường kính AB. LẤY điểm C nằm giữa A và B. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại I. Trên cung nhỏ BI lấy điểm M ( M khác B và I ) BM cắt CI tại D a) Chứng minh tứ giác ACMD nội tiếp b) Tiếp tuyến tại M của đường tròn tâm O cắt CI tại N. Gọi giao điểm của AM và CI là K. Chứng minh tam giác NMK cân c) Khi M thay đổi trên cung nhỏ BI chứng minh đường tròn ngoại tiếp tam giác AKD luôn đi qua một điểm cố định khác điểm A Giúp với ạ
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB và cát tuyến MCD với đường tròn (O), trong đó điểm C ở giữa hai điểm M, D. Đường thẳng qua điểm C và vuông góc với OA cắt AB tại H. Gọi I là trung điểm của dây CD.
Chứng minh : HI // AD
Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung CB. Tiếp tuyến tại B với đường tròn (O) cắt AC tại E. Gọi I là trung điểm của dây AC. a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB→ = EC . EA c) Biết bán kính đường tròn (O) bằng 2cm, tính diện tích tam giác ABE. Giải giúp em với ạ
Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung BC. Tiếp tuyến tại B với đường tròn tâm O cắt AC tại E. Gọi I là trung điểm của dây AC a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB²=EC.EA c) Biết bán kính đường tròn tâm O bằng 2cm, tính diện tích tam giác ABE Vẽ hình và giải giúp e với ạ
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trên cung nhỏ AC lấy điểm D. Kẻ DE vuông góc với BC, DF vuông góc với ÁC
a) CMR: Tứ giác DFEC nội tiếp được đường tròn
b) Gọi G là giao điểm của AB và EF. CMR : Góc FED = Góc ABD và tam giác BDG vuông
c) Gọi I là trung điểm của EF, H là trung điểm của AB. CMR: Tam giác ABD đồng dạng với tam giác FED và IH vuông góc với DI