Cho tam giác cân ABC ;đáy BC,góc BAC=20o . Trên cạnh AB lấy điểm E sao cho góc BCE = 50o . Trên cạnh AC lấy điểm D sao cho góc CBD= 60o . Qua D kẻ đường thẳng song song với BC , nó cắt AB tại F . Gọi O là giao điểm của BD và CF
a. Chứng minh tam giác AFC= tam giác ADB
b. CM tam giac OFD và tam giác OBC là các tam giác đều
c. Tính góc EOB
d. CM tam giác EFD = tam giác EOD
e. Tính góc BDE
Trên cạnh BC của tam giác ABC , lấy các điểm E và F sao cho BE = CF . Qua E và F , vẽ các đường thằng song song với BA , chúng cắt cạnh AC theo thứ tự tại G và H . Chứng minh rằng EG + FH = AB
Cho tam giác ABC có AB<AC, trên tia AC lấy D sao cho AD=AB, phân giác của góc A cắt BC tại E, cắt BD tại H. Qua C kẻ đường thẳng song song với BD cắt tia AB tại F
CMR E,F,D thẳng hàng
Cho ABC. Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC vẽ các đường thẳng song song với AB, AC chúng cắt xy theo thứ tự tại D và E. Chứng minh rằng:
a. ΔABC = ΔMDE
b. Ba đường thẳng AM, BD, CE cùng đi qua một điểm.
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2
Cho tam giác ABC, trên tia đối của AB lấy D sao cho AD=AB. Lấy G thuộc AC sao cho AG = 1/3.AC. Tia DG cắt BC tại E; qua E vẽ đường thẳng song song với BD; qua D vẽ đường thẳng song song với BC. Hai đường này cắt nhau tại F. Gọi M là giao của È và CD. Chứng minh 3 điểm B, G, M thẳng hàng.
Cho \(\Delta ABC\) , đường thẳng xy đi qua A song song với BC . Từ 1 điểm M trên BC , vẽ các đường thẳng song song với AB và AC cắt xy theo thứ tự tại D và E .
Chứng minh rằng :
a) \(\Delta ABC=\Delta MOE\)
b) ba đường thẳng AM , BD , CE cùng đi qua 1 điểm
Cho ΔABC vuông tại A. Tia phân giác của \(\widehat{ABC}\) cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA.
a) Chứng minh BD là đường trung trực của đoạn thẳng AE.
b) Qua A kẻ đường thẳng song song với BD cắt ED tại K. Chứng minh: KE < 2AB
Trên cạnh BC của \(\Delta ABC\) lấy điểm D và E sao cho BD = CE. Các đường thẳng qua D và qua E song song với AB cắt AC theo thứ tự ở M và N. C/minh : MD + NE = AB