bạn nào trả lời đúng mình kêu tất cả các bạn mình zô phụ tích gium cho
mn
bạn nào trả lời đúng mình kêu tất cả các bạn mình zô phụ tích gium cho
mn
(6-15GP/1 câu) Chứng mịnh định lí Fermat đơn giản, theo hiểu biết của kiến thức Toán học phổ thông:
1. Chứng minh rằng có vô số nghiệm nguyên dương (x,y,z) thỏa mãn \(x^2+y^2=z^2\).
2. Chứng minh rằng có vô số nghiệm nguyên dương (x,y,z) thỏa mãn \(x^2+y^2=z^3\).
3. Chứng minh rằng không có nghiệm nguyên dương (x,y,z) thỏa mãn \(x^3+y^3=z^3\).
4. Nếu ta thay \(z^3\) thành \(z^5\), bài toán số 2 có còn đúng không? Vì sao?
Cho các số thực dương $x,y,z$ thỏa mãn $x+y+z=1$. Chứng minh rằng:
\(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+xz}}+\dfrac{z}{z+\sqrt{z+xy}}\le1\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: \(x^5+y^2=xy^2+1\)
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số).Tìm tất cả các giá trị của m để(d) cắt (P) tại hai điểm phân biệt A, B sao cho OI= căn 10,với I là trung điểm của đoạn thẳng AB.
với x,y là hai số thực tùy ý, chứng minh rằng ta luôn có : \(x^{4^{ }}+y^4>=\frac{1}{2}\left(x^3y+xy^3\right)+x^2y^2\)
Cho x, y, z là các số hữu tỉ thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{z}\)
Chứng minh rằng \(\sqrt{x^2+y^2+z^2}\) là số hữu tỉ
Các idol dô đây lẹ
1Cho x,y,z >0 và xy+yz+zx=1. Chứng minh rằng \(3\left(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}+\dfrac{1}{z^2+1}\right)+\left(1+x^2^x\right)\left(1+y^2\right)\left(1+z^2\right)\ge\dfrac{985}{108}\) 2 Cho p,q là hai số nguyên tố thoả mãn \(p-1⋮p\) và \(p^3-1p⋮\) Chứng minh rằng p+q là số chính phương
5. Cho các số thực dương x, y và z thỏa mãn x+y+z+=1. Chứng minh rằng x/(x+yz)+y/(y+zx)+z/(z+xy)=<9/4
cho \(x=3+\sqrt{2};y=3-\sqrt{2}\) ko dùng bảng số và máy tính, hãy tính GTBT : \(A=x^5+y^5\)