Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
học cho cố vô rồi ngu si

tính tổng \(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

Nhã Doanh
27 tháng 2 2018 lúc 10:39

\(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Rightarrow2S=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Rightarrow2S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\) \(\Rightarrow2S=1-\dfrac{1}{2n+1}\)

\(\Rightarrow S=\dfrac{n}{2n+1}\)

đề bài khó wá
27 tháng 2 2018 lúc 10:56

Ta có : \(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

ta được \(\dfrac{1}{1.3}=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}\right);\dfrac{1}{3.5}=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}\right);\dfrac{1}{5.7}=\dfrac{1}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\)

\(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\) vậy \(S=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)=\dfrac{n}{2n+1}\)


Các câu hỏi tương tự
Ngọc Nhi
Xem chi tiết
Trần Vy
Xem chi tiết
Đinh Diệp
Xem chi tiết
Juvia Lockser
Xem chi tiết
Trần Ích Bách
Xem chi tiết
Forever alone
Xem chi tiết
Lê Phương Thùy
Xem chi tiết
Nguyễn Hồng Hạnh
Xem chi tiết
Bướm Đêm Sát Thủ
Xem chi tiết