Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hồng Hạnh

1, rút gọn

\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+....+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

BW_P&A
26 tháng 9 2017 lúc 5:52

Violympic toán 8

Nguyễn Huy Tú
26 tháng 9 2017 lúc 14:50

\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+...+\dfrac{2n+1}{n^2\left(n^2+2n+1\right)}\)

\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{n^2}-\dfrac{1}{n^2+2n+1}\)

\(=1-\dfrac{1}{n^2+2n+1}\)

\(=\dfrac{n^2+2n}{n^2+2n+1}=\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\)

Đức Hiếu
26 tháng 9 2017 lúc 5:50

Xét thừa số tổng quát:

\(\dfrac{k}{\left(\dfrac{k-1}{2}.\dfrac{k+1}{2}\right)^2}\)\(=\dfrac{k}{\left(\dfrac{\left(k-1\right)\left(k+1\right)}{4}\right)^2}=\dfrac{k}{\left(\dfrac{\left(k-1\right)\left(k+1\right)}{4}\right)^2}\)

\(=\dfrac{k}{\dfrac{\left[\left(k-1\right)\left(k+1\right)\right]^2}{16}}=\dfrac{k}{\dfrac{\left(k^2-1\right)^2}{16}}=\dfrac{16k}{\left(k^2-1\right)^2}\)

Thay \(k=3;5;....2n+1\) ta được:

\(\dfrac{16.3}{\left(3^2-1\right)^2}+\dfrac{16.5}{\left(5^2-1\right)^2}+....+\dfrac{16.n}{\left(n^2-1\right)^2}\)

\(=16.\left(\dfrac{3}{\left(3^2-1\right)^2}+\dfrac{5}{\left(5^2-1\right)^2}+...+\dfrac{n}{\left(n^2-1\right)^2}\right)\)

\(=16.\left(\dfrac{3}{\left[\left(3-1\right)\left(3+1\right)\right]^2}+\dfrac{5}{\left[\left(5-1\right)\left(5+1\right)\right]^2}+...+\dfrac{n}{\left[\left(n-1\right)\left(n+1\right)\right]^2}\right)\)

\(=16.\left(\dfrac{3}{4.16}+\dfrac{5}{16.36}+...+\dfrac{n}{\left(n-1\right)^2.\left(n+1\right)^2}\right)\)

\(=4.\left(\dfrac{12}{4.16}+\dfrac{20}{16.36}+...+\dfrac{4n}{\left(n-1\right)^2.\left(n+1\right)^2}\right)\)

\(=4.\left(\dfrac{1}{4}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{36}+...+\dfrac{1}{\left(n-1\right)^2}-\dfrac{1}{\left(n+1\right)^2}\right)\)

\(=4.\left(\dfrac{1}{4}-\dfrac{1}{\left(n+1\right)^2}\right)\)

\(=4.\left(\dfrac{\left(n+1\right)^2}{4\left(n+1\right)^2}-\dfrac{4}{4\left(n+1\right)^2}\right)\)

\(=4.\left(\dfrac{\left(n+1\right)^2-4}{4\left(n+1\right)^2}\right)=\dfrac{4\left(n+1\right)^2-16}{4\left(n+1\right)^2}\)

\(=\dfrac{4\left[\left(n+1\right)^2-4\right]}{4\left(n+1\right)^2}=\dfrac{\left(n+1\right)^2-4}{\left(n+1\right)^2}\)

Chúc bạn học tốt!!!

BW_P&A
26 tháng 9 2017 lúc 20:00

Violympic toán 8


Các câu hỏi tương tự
Bướm Đêm Sát Thủ
Xem chi tiết
Thu Hà Nguyễn
Xem chi tiết
Hoàng Thảo Linh
Xem chi tiết
Vũ Thanh Hằng
Xem chi tiết
Big City Boy
Xem chi tiết
Phát Võ
Xem chi tiết
Nghịch Dư Thủy
Xem chi tiết
Hồ Quế Ngân
Xem chi tiết
Big City Boy
Xem chi tiết