Các số hạng của tổng lập thành cấp số nhân \(\left( {{u_n}} \right),\) có \({u_1} = 1,q = - \frac{1}{2}\) nên \(M = \frac{1}{{1 - \frac{{ - 1}}{2}}} = \frac{2}{3}\)
Các số hạng của tổng lập thành cấp số nhân \(\left( {{u_n}} \right),\) có \({u_1} = 1,q = - \frac{1}{2}\) nên \(M = \frac{1}{{1 - \frac{{ - 1}}{2}}} = \frac{2}{3}\)
Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) với \({u_n} = 8 + \frac{1}{n};{v_n} = 4 - \frac{2}{n}.\)
a) Tính \(\lim {u_n},\lim {v_n}.\)
b) Tính \(\lim \left( {{u_n} + {v_n}} \right)\) và so sánh giá trị đó với tổng \(\lim {u_n} + \lim {v_n}.\)
c) Tính \(\lim \left( {{u_n}.{v_n}} \right)\) và so sánh giá trị đó với tích \(\left( {\lim {u_n}} \right).\left( {\lim {v_n}} \right).\)
Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) với \({u_n} = 3 + \frac{1}{n};{v_n} = 5 - \frac{2}{{{n^2}}}.\) Tính các giới hạn sau:
a) \(\lim {u_n},\lim {v_n}.\)
b) \(\lim \left( {{u_n} + {v_n}} \right),\lim \left( {{u_n} - {v_n}} \right),\lim \left( {{u_n}.{v_n}} \right),\lim \frac{{{u_n}}}{{{v_n}}}.\)
Tính các giới hạn sau:
a) \(\lim \frac{{5n + 1}}{{2n}};\)
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}};\)
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}};\)
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right);\)
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}};\)
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}.\)
a) Tính tổng của cấp số nhân lùi vô hạn \(\left( {{u_n}} \right),\) với \({u_1} = \frac{2}{3},q = - \frac{1}{4}.\)
b) Biểu diễn số thập phân vô hạn tuần hoàn 1,(6) dưới dạng phân số.
Cho cấp số nhân \(\left( {{u_n}} \right),\) với \({u_1} = 1\) và công bội \(q = \frac{1}{2}.\)
a) So sánh \(\left| q \right|\) với 1.
b) Tính \({S_n} = {u_1} + {u_2} + ... + {u_n}.\) Từ đó, hãy tính \(\lim {S_n}.\)
Hình 2 biểu diễn các số hạng của dãy số \(\left( {{u_n}} \right),\) với \({u_n} = \frac{1}{n}\) trên hệ trục tọa độ.
a) Nhận xét về sự thay đổi các giá trị \({u_n}\) khi n ngày càng lớn.
b) Hoàn thành bảng và trả lời câu hỏi sau:
Kể từ số hạng \({u_n}\) nào của dãy số thì khoảng cách từ \({u_n}\) đến 0 nhỏ hơn 0,001? 0,0001?
Chứng tỏ rằng \(\lim \frac{{n - 1}}{{{n^2}}} = 0.\)
Tính các giới hạn sau:
a) \(\lim \frac{{8{n^2} + n}}{{{n^2}}};\)
b) \(\lim \frac{{\sqrt {4 + {n^2}} }}{n}.\)
Chứng minh rằng \(\lim {\left( {\frac{e}{\pi }} \right)^n} = 0.\)