\(S_n=u_1.\frac{q^n-1}{q-1}=12.\frac{2^{2020}-1}{2-1}=12.2^{2020}-12\)
\(S_n=u_1.\frac{q^n-1}{q-1}=12.\frac{2^{2020}-1}{2-1}=12.2^{2020}-12\)
Cho cấp số nhân thỏa mãn u1+u2+u3=13;u4-u1=26 . Tổng 8 số hạng đầu của cấp số nhân (un) là
Tìm bốn số biết rằng ba số hạng đầu lập thành một cấp số nhân, ba số hạng sau lập thành một cấp số công. Tổng của hai số hạng đầu và cuối bằng 14, còn tổng của 2 số ở giữa là 12 ?
Ai đó làm ơn giúp mình với ạ, mình cảm ơn rất nhiều 1.Cho cấp số nhân(Un). Tìm U1 và q. Biết rằng a. U1 + u6= 165; u3 + u4=60 2. Tìm số hạng đầu và công bội của cấp số nhân, biết a. U4- u2= 72; U5- u3=144 b. u1- u3+u5=65;u1+u7=325 c. u3+u5=90; u2-u6=240 d. u1+u2+u3=14; u1.u2.u3=64
1) Tìm số hạng đầu u1 và công bội q của Cấp Số Nhân (Un)
a) Biết u2=-10, u3=-20
b) Biết u3=2, u6=1/4
c) Biết{ u1-u3=-9; u3-u5=-36}
2)Tìm S8 của Cấp Số Nhân (Un) biết:
{u4-u2=24; u3-u1=12}
3) Cho Cấp Số Nhân(Un) với công bội q :
a) biết u1=4; q =-2. Tính u10 và S15
4) Chứng minh : Dãy số sau là cấp số nhân
a) Dãy số có số hạng tổng quát : Un= 5x(1/2)^2n-1
5) Cho q=1/3,S5 =121.Tìm u1
6) Cho Cấp Số Nhân có u2=4 và u4=9. Tính giá trị của u3.
Bài 1: Lương hàng năm (triệu đồng) của một chuyên gia lập thành một cấp số nhân, với số hạng đầu \(u_1=240\) và công bội \(q=1,05\). Hãy tính tổng số lương của chuyên gia đó sau 10 năm chính là tổng của 10 số hạng đầu của cấp số nhân này và bằng bao nhiêu?
Một cấp số nhân có 5 số hạng, công bội \(q=\frac{1}{4}\) số hạng thứ nhất, tổng của hai số hạng đầu bằng 24. Tìm cấp số nhân đó ?
tính tổng tất cả các số hạng của một cấp số nhân có số hạng đầu bằng \(\sqrt{2}\), số hạng thứ 2 bằng \(-2\) và số hạng cuối là \(64\sqrt{2}\)
Tìm cấp số nhân có 6 số hạng, biết rằng tổng của năm số hạng đầu là 31 và tổng của năm số hạng sau là 62 ?
Cấp số nhân \(\left(u_n\right)\) có
\(\left\{{}\begin{matrix}u_1+u_5=51\\u_2+u_6=102\end{matrix}\right.\)
a) Tìm số hạng đầu và công bội của cấp số nhân ?
b) Hỏi tổng của bao nhiêu số hạng đầu tiên sẽ bằng 3069 ?
c) Số 12 288 là số hạng thứ mấy ?