Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phí Vũ Diệu Linh

Tính tổng:

A= 5/1.4+5/4.7+...+5/100.103

B= 1/15+1/35+...+1/2499

Trần Thị Mỹ Bình
30 tháng 4 2017 lúc 21:52

a) \(A=\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)

\(\Leftrightarrow A=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)

\(\Leftrightarrow\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(\Leftrightarrow\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)

\(\Leftrightarrow\dfrac{5}{3}.\dfrac{102}{103}\)

\(\Leftrightarrow\) \(A=\dfrac{170}{103}\)

b) \(B=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)

\(B=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)

\(B=\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{51}\right)\)

\(B=\dfrac{1}{2}.\dfrac{16}{51}\)

\(B=\dfrac{8}{51}\)

Trần Thị Kim Chi
2 tháng 6 2017 lúc 13:37

A = \(\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)

A = \(\dfrac{5}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)

A = \(\dfrac{5}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-...-\dfrac{1}{100}+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{100}-\dfrac{1}{100}\right)-\dfrac{1}{103}\right]\)

A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-0-0-...-0-\dfrac{1}{103}\right]\)

A = \(\dfrac{5}{3}.\left[\dfrac{1}{1}-\dfrac{1}{103}\right]\)

A = \(\dfrac{5}{3}.\left[\dfrac{103}{103}-\dfrac{1}{103}\right]\)

A = \(\dfrac{5}{3}.\dfrac{102}{103}\)

A = \(\dfrac{170}{103}\)

B = \(\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)

B = \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)

B = \(\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\right)\)

B = \(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...-\dfrac{1}{49}+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\left(\dfrac{1}{49}-\dfrac{1}{49}\right)-\dfrac{1}{51}\right]\)

B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-0-0-...-0-\dfrac{1}{51}\right]\)

B = \(\dfrac{1}{2}.\left[\dfrac{1}{3}-\dfrac{1}{51}\right]\)

B = \(\dfrac{1}{2}.\left[\dfrac{17}{51}-\dfrac{1}{51}\right]\)

B = \(\dfrac{1}{2}.\dfrac{16}{51}\)

B = \(\dfrac{8}{51}\)

Đẹp Trai Không Bao Giờ S...
2 tháng 6 2017 lúc 14:05

Hỏi đáp Toán


Các câu hỏi tương tự
agelina jolie
Xem chi tiết
I LOVE KOOKIE
Xem chi tiết
Phạm Thu Huyền
Xem chi tiết
Nguyễn Thị Giang Thanh
Xem chi tiết
Phạm Duy Thành
Xem chi tiết
I LOVE KOOKIE
Xem chi tiết
Phạm Nguyễn Trúc Ngân
Xem chi tiết
thanh
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết