\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =1-\dfrac{1}{50}\\ =\dfrac{49}{50}\)
\(S=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{43\cdot46}\\ =\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\\ =1-\dfrac{1}{46}\\ =\dfrac{45}{46}\)
\(S=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\\ =\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{49\cdot51}\\ =\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{3}-\dfrac{1}{51}\right)\\ =\dfrac{1}{2}\cdot\dfrac{16}{51}\\ =\dfrac{8}{51}\)
\(S=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{98\cdot99\cdot100}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{98\cdot99\cdot100}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}-\dfrac{1}{99\cdot100}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{99\cdot100}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\\ =\dfrac{1}{2}\cdot\dfrac{4949}{9900}=\dfrac{4949}{19800}\)