\(S=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+................+\dfrac{1}{3^9}\)
\(\Rightarrow3S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+................+\dfrac{1}{3^8}\)
\(\Rightarrow3S-S=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+.............+\dfrac{1}{3^8}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+..........+\dfrac{1}{3^9}\right)\)
\(\Rightarrow2S=1-\dfrac{1}{3^9}\)
\(\Rightarrow S=\dfrac{1-\dfrac{1}{3^9}}{2}\)
Ta có : 3S = \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^8}\)
3S - S = \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^8}\) - \(\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^9}\right)\)
2S = \(1-\dfrac{1}{3^9}=\dfrac{3^9-1}{3^9}\)
S = \(\dfrac{3^9-1}{2.3^9}\)
\(S=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^9}\)(1)
nhân hai vế với 3, ta được:
\(3S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^8}\)(2)
trừ (1) cho (2), ta được:
\(3S-S=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^8}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^9}\right)\)\(2S=1-\dfrac{1}{3^9}\)
\(S=\dfrac{1-\dfrac{1}{3^9}}{2}\)
\(S=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^9}\)
\(3S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^8}\)
\(2S=3S-S=1-\dfrac{1}{3^9}\)
\(\Rightarrow S=\dfrac{1-\dfrac{1}{3^9}}{2}\)
Vậy \(S=\dfrac{1-\dfrac{1}{3^9}}{2}\)
tik mik nha !!!