Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jenny Jenny

Chứng minh rằng:

S=\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)

Hoang Hung Quan
3 tháng 5 2017 lúc 21:17

Giải:

Ta có:

\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\) \(\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Nhận xét:

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)

Vậy \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) \(< \dfrac{1}{2}\) (Đpcm)


Các câu hỏi tương tự
Hà Thị Mai Hương
Xem chi tiết
Kirigaya Kazuto
Xem chi tiết
Khánh Linh
Xem chi tiết
Đỗ Manh Tiến
Xem chi tiết
Khánh Linh
Xem chi tiết
Hải Đăng
Xem chi tiết
Kirigaya Kazuto
Xem chi tiết
Huỳnh Hạnh Nhi
Xem chi tiết
Tuyết Nhi Melody
Xem chi tiết