Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Guyo

Tính tích phân :

\(\int\limits^e_1x^3\ln^2xdx\)

Bùi Quỳnh Hương
4 tháng 4 2016 lúc 20:43

Đặt \(u=\ln^2x\rightarrow du=2\ln x\frac{dx}{x},dv=\int\limits x^3dx\rightarrow v=\frac{1}{4}x^4\)

Do đó : \(I=\frac{1}{4}x^4.\ln^2x|^e_1-\frac{1}{4}\int\limits^e_12\ln x.\frac{x^4}{x}dx=\frac{e^4}{4}-\frac{1}{2}\int\limits^e_1x^3\ln sdx=\frac{e^4}{4}-\frac{1}{2}J\left(1\right)\)

Tính \(J=\int\limits^e_1x^3\ln xdx\)

Đặt \(u_1=\ln x\rightarrow du_1=\frac{dx}{x},dv_1=\int x^3dx\rightarrow v_1=\frac{1}{4}x^4\)

Do đó : 

\(J=\frac{1}{4}x^4\ln x|^e_1-\frac{1}{4}\int\limits^e_1x^3dx=\frac{e^4}{4}-\frac{1}{16}x^2|^e_1=\frac{3e^4+1}{16}\)

Thay vào (1) ta có :

\(I=\frac{e^4}{4}-\frac{1}{2}\left(\frac{3e^4+1}{16}\right)=\frac{5e^4-1}{32}\)


Các câu hỏi tương tự
Bùi Thị Ánh Tuyết
Xem chi tiết
Đoàn Thị Hồng Vân
Xem chi tiết
Nguyễn Thị Hà Uyên
Xem chi tiết
Võ Bình Minh
Xem chi tiết
Ngô Thị Ánh Vân
Xem chi tiết
Lê Thị Thanh
Xem chi tiết
Phạm Thị Thúy Giang
Xem chi tiết
Trần Thị Quỳnh Vy
Xem chi tiết
Nguyễn Thanh Hải
Xem chi tiết