Cho hai biểu thức: \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\); \(B=\frac{\sqrt{x}-3}{\sqrt{x}+1}\) với \(x\ge0;x\ne9\)
a) Tính giá trị của biểu thức B tại x=25
b) Rút gọn biểu thức A
c) Tìm giá trị nhỏ nhất của biểu thức: P=A.B+1
a,b,c>0, biết a+b+c=3
CMR a)\(\frac{ab}{\sqrt{a^2+3b^2}}+\frac{bc}{\sqrt{b^2+3c^2}}+\frac{ac}{\sqrt{c^2+3a^2}}\)≤\(\frac{3}{2}\)
b)\(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\)≥\(\frac{3}{2}\)
a,\(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2.b}-\sqrt{a.b^2}\left(Vớia>0,b>0\right)\)
b,\(x-y+\sqrt{x.y^2}-\sqrt{y^3}\left(Vớix>0,y>0\right)\)
Cho các biêu thức
A=\(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)
B=\(\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
Với \(x\ge0,x\ne9\)
Tìm x nguyên để P=A.B là số nguyên
Cho hđt:
\(\sqrt{a\pm\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\) (a,b>0 và \(a^2-b>0\))
Áp dụng kq để rút gọn:
\(a.\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
b. \(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
c. \(\sqrt{\frac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}}:\frac{2}{\sqrt{3}-1}\)
Cho a =\(\sqrt{3+\sqrt{5}}\), b = \(\sqrt{3-\sqrt{5}}\).
a, Tính A = a.b
b, Tính B = a2 + b2
1. So sánh:
a. \(\sqrt{18}+\sqrt{19}\) và 9
b. \(\frac{16}{\sqrt{2}}\)và \(\sqrt{5}.\sqrt{25}\)
2. Cho Hđt \(\sqrt{a\pm\sqrt{b}}=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)vs \(\left(a,b>0,a^2-b>0\right)\)
Áp dụng kết quả để rút gọn:
a. \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
b. \(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
c. \(\sqrt{\frac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}}:\frac{2}{\sqrt{3}-1}\)
Cho biểu thúc A = \(\frac{x+\sqrt{x}+1}{\sqrt{x}-4}\) và B = \(\frac{\sqrt{x}-1}{\sqrt{x}-2}\) + \(\frac{5\sqrt{x}-8}{2\sqrt{x}-x}\) với x > 0; x ≠ 4; x ≠ 16
1) Tính giá trị của A khi x = 25
2) Rút gọn biểu thức B
3) Cho P = A.B. So sánh P với 2
A)\(\frac{6+2\sqrt{5}}{3-\sqrt{5}}-\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{\sqrt{5}}{2-\sqrt{5}}\)
B)\(\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{2+3\sqrt{2}}{\sqrt{2}}-\frac{3}{\sqrt{2}-1}\)
C)\(\frac{3+\sqrt{2}}{3-\sqrt{3}}-\frac{3+\sqrt{3}}{\sqrt{3}}-\frac{2}{\sqrt{3}-1}\)
D