Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hello-Tôi yêu các bạn

a,b,c>0, biết a+b+c=3

CMR a)\(\frac{ab}{\sqrt{a^2+3b^2}}+\frac{bc}{\sqrt{b^2+3c^2}}+\frac{ac}{\sqrt{c^2+3a^2}}\)\(\frac{3}{2}\)

b)\(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\)\(\frac{3}{2}\)

Phạm Minh Quang
10 tháng 10 2019 lúc 2:05

b) Ta có:

\(\frac{a}{\sqrt{b^2+3}}+\frac{a}{\sqrt{b^2+3}}+\frac{b^2+3}{8}+\frac{a^2}{2}\)\(\ge\)\(4\sqrt[4]{\frac{a^4}{16}}=2a\)

\(\frac{b}{\sqrt{c^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c^2+3}{8}+\frac{b^2}{2}\ge4\sqrt[4]{\frac{b^4}{16}}=2b\)

\(\frac{c}{\sqrt{a^2+3}}+\frac{c}{\sqrt{a^2+3}}+\frac{a^2+3}{8}+\frac{c^2}{2}\ge4\sqrt[4]{\frac{c^4}{16}}=2c\)

Cộng lại ta đươc:

\(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)+\)\(\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)\(\ge2\left(a+b+c\right)\)

\(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5\left(a^2+b^2+c^2\right)+9}{8}\)(1)

Lại có: \(a^2+1\ge2a\); \(b^2+1\ge2b\); \(c^2+1\ge2c\)

Suy ra \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3=3\)

Khi đó (1)⇔ \(2\left(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\right)\ge\)\(6-\frac{5.3+9}{8}=3\)

\(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)

Dấu "=" xảy ra ⇔ \(a=b=c=1\)

Nguyễn Việt Lâm
10 tháng 10 2019 lúc 8:16

\(\left(a^2+3b^2\right)\left(1+3\right)\ge\left(a+3b\right)^2\Rightarrow\sqrt{a^2+3b^2}\ge\frac{a+3b}{2}\)

\(\Rightarrow P=\sum\frac{ab}{\sqrt{a^2+3b^2}}\le2\sum\frac{ab}{a+3b}=2\sum\frac{ab}{a+b+b+b}\)

\(\Rightarrow P\le\frac{1}{8}\sum ab\left(\frac{1}{a}+\frac{3}{b}\right)=\frac{1}{8}\sum\left(3a+b\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

"=" \(\Leftrightarrow a=b=c=1\)


Các câu hỏi tương tự
trung le quang
Xem chi tiết
Thanh Tân
Xem chi tiết
nguyễn minh
Xem chi tiết
Vũ Cao cườngf ff
Xem chi tiết
nam do
Xem chi tiết
Thuyết Dương
Xem chi tiết
bach nhac lam
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Tdq_S.Coups
Xem chi tiết