Diện tích đáy lớn là: \(S = {5^2} = 25\left( {{m^2}} \right)\)
Diện tích đáy bé là: \(S' = {2^2} = 4\left( {{m^2}} \right)\)
Thể tích của bồn chứa là: \(V = \frac{1}{3}.3\left( {25 + \sqrt {25.4} + 4} \right) = 39\left( {{m^3}} \right)\)
Diện tích đáy lớn là: \(S = {5^2} = 25\left( {{m^2}} \right)\)
Diện tích đáy bé là: \(S' = {2^2} = 4\left( {{m^2}} \right)\)
Thể tích của bồn chứa là: \(V = \frac{1}{3}.3\left( {25 + \sqrt {25.4} + 4} \right) = 39\left( {{m^3}} \right)\)
Tính thể tích cái nêm hình lăng trụ đứng có kích thước như trong Hình 21.
Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\) và có \(O\) là giao điểm hai đường chéo của đáy.
a) Tính khoảng cách giữa hai đường thẳng \(AC\) và \(SB\).
b) Tinh thể tích của khối chóp.
Tính thể tích của khối chóp cụt lục giác đều \(ABCDEF.{\rm{ }}A'B'C'D'E'F'\) với \(O\) và \(O'\) là tâm hai đáy, cạnh đáy lớn và đáy nhỏ lần lượt là \(a\) và \(\frac{a}{2},OO' = a\).
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = a\), góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \({60^ \circ }\).
a) Tính khoảng cách giữa hai đáy của hình lăng trụ.
b) Tinh thể tích của khối lăng trụ.
Cho khối lăng trụ tam giác \(ABC.A'B'C'\) (Hình 14). Tìm cách chia khối lăng trụ thành ba khối chóp có cùng chiều cao và diện tích đáy.
Cho hình hộp đứng \(ABCD.A'B'C'D'\) có cạnh bên \(AA' = 2a\) và đáy \(ABCD\) là hình thoi có \(AB = a\) và \(AC = a\sqrt 3 \).
a) Tính khoảng cách giữa hai đường thẳng \(B{\rm{D}}\) và \(AA'\).
b) Tính thể tích của khối hộp.
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình thoi cạnh \(a\) có \(O\) là giao điểm của hai đường chéo, \(\widehat {ABC} = {60^ \circ },SO \bot \left( {ABCD} \right),SO = a\sqrt 3 \). Tính khoảng cách từ \(O\) đến mặt phẳng \(\left( {SCD} \right)\).
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA = SB = SC = SD = a\sqrt 2 \). Gọi \(I,J\) lần lượt là trung điểm của \(AB\) và \(C{\rm{D}}\).
a) Chứng minh \(AB \bot \left( {SIJ} \right)\).
b) Tính khoảng cách giữa hai đường thẳng \(AB\) và \(SC\).
Cho một khối hộp chữ nhật với các kích thước là a,b,c
đều là số nguyên dương. Về các mặt phẳng song song với các mặt của hình hộp và chia nó thành các khối lập phương có cạnh bằng 1 (Hình 11). Tìm số hình lập phương đơn vị có trong hình hộp.