thực hiện phép tính
\(\dfrac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\)
thực hiện phép tính
\(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{16}-2}-\dfrac{12}{3-\sqrt{16}}\right).\left(\sqrt{6}+11\right)\)
Cho \(x=\dfrac{\sqrt[3]{26+15\sqrt{3}}.\left(2-\sqrt{3}\right)}{\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}}\). Tính giá trị của biểu thức: \(M=\left(3x^3-x^2-1\right)^{2021}\)
Thực hiện phép tính:
a)\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
b)\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)
c)\(\sqrt{48-6\sqrt{15}}-\sqrt{72-18\sqrt{15}}\)
d)\(\sqrt{29-6\sqrt{20}}+\sqrt{14+3\sqrt{20}}\)
Bài 1: Rút gọn biểu thức
a) \(A=\sqrt{26+15\sqrt{3}}\)
b) \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
c) \(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
d) \(D=\left(\sqrt{6}-2\right)\left(5+\sqrt{24}\right)\sqrt{5-\sqrt{24}}\)
e) \(E=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{3+\sqrt{5}}\right)\)
f) \(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
g) \(G=\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
h) \(H=\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}\)
Tính:
\(a,\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
\(b,\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}}\)
Tính :
B = \(\frac{15-2\sqrt{15}}{\sqrt{15}-2}-\sqrt{18+6\sqrt{5}}\)
Thu gọn:
\(\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
\(x=\sqrt[3]{15-3\sqrt{22}}+\sqrt[3]{15+3\sqrt{22}}\)