\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2009.2011}\)
\(A=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2009.2011}\right)\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{2011}\right)\)
\(A=\dfrac{1}{2}.\dfrac{2010}{2011}\)
\(A=\dfrac{1005}{2011}\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2009.2011}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2009.2011}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{2}.\dfrac{2010}{2011}\)
\(=\dfrac{1005}{2011}\)
Vậy \(A=\dfrac{1005}{2011}\)
A=1.(1-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2009}-\)\(\dfrac{1}{2011}\))
A=1.(1-\(\dfrac{1}{2011}\))
A=1.(\(\dfrac{2011-1}{2011}\))
A=1.\(\dfrac{2010}{2011}\)
A=\(\dfrac{2010}{2011}\)
Chúc bạn học tốt nha!
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2009.2011}\)
=\(\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2009.2011}\right)\)
=\(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)
= \(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{2011}\right)\)
=\(\dfrac{1}{2}.\dfrac{2010}{2011}\)
=\(\dfrac{1005}{2011}\)
Vậy A=\(\dfrac{1005}{2011}\)