\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+............+\dfrac{1}{99.101}\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+.....+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=\dfrac{1}{2}.\dfrac{98}{303}=\dfrac{49}{303}\)
\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+.................+\dfrac{1}{99.101}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}.\dfrac{98}{303}\)
\(=\dfrac{49}{303}\)
\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+.........+\dfrac{1}{99.101}\)
\(\Rightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+............+\dfrac{2}{99.101}\)
\(\Rightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+....+\dfrac{1}{99}-\dfrac{1}{101}\)
(do \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với mọi giá trị của \(a\in N\)*)
\(\Rightarrow2A=\dfrac{1}{3}-\dfrac{1}{101}\)
\(\Rightarrow2A=\dfrac{98}{303}\Rightarrow A=\dfrac{49}{303}\)
Chúc bạn học tốt!!!
Ta có
\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{99.101}\)
\(2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)
\(2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(2A=\dfrac{1}{3}-\dfrac{1}{101}\)
\(A=\dfrac{98}{303}:2=\dfrac{49}{303}\)
A = \(\dfrac{1}{2}\) . ( \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + \(\dfrac{2}{7.9}\) + ........... + \(\dfrac{2}{99.101}\) )
A = \(\dfrac{1}{2}\) . ( \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\) + ............ + \(\dfrac{1}{99}\) - \(\dfrac{1}{101}\) )
A = \(\dfrac{1}{2}\) . ( \(\dfrac{1}{3}\) - \(\dfrac{1}{101}\) )
A = \(\dfrac{1}{2}\) . \(\dfrac{98}{303}\)
A = \(\dfrac{49}{303}\)
Vậy A = \(\dfrac{49}{303}\)
Giải:
\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{99.101}.\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\right).\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right).\)
\(A=\dfrac{1}{2}\left[\dfrac{1}{3}+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+...+\left(\dfrac{1}{99}-\dfrac{1}{99}\right)-\dfrac{1}{101}\right].\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{3}+0+0+...+0-\dfrac{1}{101}\right).\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{101}\right).\)
\(A=\dfrac{1}{2}.\dfrac{98}{303}.\)
\(A=\dfrac{49}{303}.\)
Vậy \(A=\dfrac{49}{303}.\)
~ Học tốt!!! ~